Symposium on Symplectic Geometry and Complex Geometry

辛几何与复几何研讨会

基本信息

  • 批准号:
    1603983
  • 负责人:
  • 金额:
    $ 2.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

The 2016 Yamabe Memorial Symposium will be held from Friday to Sunday, September 30-October 2, 2016, at the School of Mathematics, on the Minneapolis campus of the University of Minnesota. One goal will be, as a way to honor the memory of Hidehiko Yamabe, to advance areas of mathematics related to his interests, which touched in a substantial and ground-breaking way on several quite different areas of mathematics, all of which may be roughly described as having significant geometric aspects. At the same time, it will provide a valuable opportunity for graduate students and junior researchers to interact with, and learn from, mathematicians working at the highest international level. Finally, a long-lasting benefit will be the stimulation of innovative developments in mathematics research.This year is the eighth anniversary of the Yamabe program, on the theme of "Symplectic Geometry and Complex Geometry." Eight experts in this area will be invited to speak. It will be a high-level conference on aspects of symplectic geometry, complex geometry, contact structures and the interactions between these and related areas. The purpose of this Symposium is to bring to our participants deeper understanding of some recent discoveries in those areas, and to bring to the fore new issues that have arisen in light of them. The new understanding will encourage participants to gain a wider perspective of the recently found deep connections between symplectic and complex geometry. Potentially, this knowledge will inspire further discoveries in these and related fields.Details of the Yamabe Symposium are at http://www.math.umn.edu/yamabe/.
2016年山边纪念研讨会将于2016年9月30日至10月2日周五至周日在明尼苏达大学明尼阿波利斯校区数学学院举行。作为纪念山边英彦的一种方式,一个目标是推进与他的兴趣相关的数学领域,这些领域以实质性和开创性的方式触及了几个完全不同的数学领域,所有这些领域都可以粗略地描述为具有重要的几何方面。同时,它将为研究生和初级研究人员提供与国际最高水平的数学家互动并向他们学习的宝贵机会。最后,一个持久的好处将是刺激数学研究的创新发展。今年是山边计划八周年,主题是“辛几何和复几何”。将邀请该领域的八位专家进行演讲。这将是一次关于辛几何、复杂几何、接触结构以及这些领域与相关领域之间的相互作用等方面的高级别会议。本次研讨会的目的是让我们的参与者更深入地了解这些领域的一些最新发现,并提出根据这些发现出现的新问题。新的理解将鼓励参与者对最近发现的辛几何和复杂几何之间的深层联系有更广阔的视角。这些知识有可能激发这些及相关领域的进一步发现。Yamabe 研讨会的详细信息请访问 http://www.math.umn.edu/yamabe/。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu-jong Tzeng其他文献

Yu-jong Tzeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu-jong Tzeng', 18)}}的其他基金

On the Motivic Goettsche Invariants
关于 Motivic Goettsche 不变量
  • 批准号:
    1503621
  • 财政年份:
    2015
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant

相似海外基金

Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
  • 批准号:
    2305392
  • 财政年份:
    2023
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
Conference: The Many Interactions between Symplectic and Poisson Geometry
会议:辛几何和泊松几何之间的许多相互作用
  • 批准号:
    2304750
  • 财政年份:
    2023
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
  • 批准号:
    2345030
  • 财政年份:
    2023
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Equivariant Symplectic Geometry
合作研究:NSF-BSF:等变辛几何
  • 批准号:
    2204359
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Standard Grant
Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
  • 批准号:
    2747173
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Studentship
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
  • 批准号:
    RGPIN-2018-05771
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic topology and equivariant geometry
辛拓扑和等变几何
  • 批准号:
    RGPIN-2020-06428
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Discovery Grants Program - Individual
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
  • 批准号:
    RGPIN-2017-06901
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
  • 批准号:
    RGPIN-2019-05899
  • 财政年份:
    2022
  • 资助金额:
    $ 2.85万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了