Haptic-Based Learning Experiences as Cognitive Mediators for Conceptual Understanding and Representational Fluency in Engineering Education

基于触觉的学习体验作为工程教育中概念理解和表征流畅性的认知中介

基本信息

  • 批准号:
    1606396
  • 负责人:
  • 金额:
    $ 32.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Haptic-Based Learning Experiences as Cognitive Mediators for Conceptual Understanding and Representational Fluency in Engineering EducationStatics is a backbone course for several engineering disciplines, a direct pre-requisite for dynamics and mechanics of materials, and a pivotal player in engineering structural design. Researchers have identified Statics as a major impediment for students to succeed in follow-on core courses (therefore affecting retention in engineering) as well as on practical design capstone courses. It is known that students enter Statics with misconceptions that are not corrected through traditional instruction. This project investigates the use of feedback devices, known as haptics, in which students can manipulate a computer-generated structure and feel the forces that are generated. It is hypothesized that the use of the haptic device will provide students specific feedback to help them develop a better conceptual understanding of Statics. This project targets a foundational topic in engineering education known to significantly affect both future performance and retention. The results of this research are broadly relevant to institutions and their students, as essentially all students in mechanical, civil, aerospace, and biomedical disciplines take Statics. Similarly, the products of this research inform learning interventions in related concepts in science and engineering (e.g., buoyancy, electricity and magnetism, and dynamics, among others).This research advances understanding of haptic-mediated learning by exploring specific affordances and constraints of visuo-haptic simulations in a laboratory experiment emphasizing statics misconceptions. Visuo-haptic simulation using force-feedback devices for education is timely, yet understudied. This research significantly extends the community's understanding of the affordances and constraints of using haptic devices for teaching difficult concepts. Following a design-based research approach, this project develops new knowledge about how haptic-based learning experiences can mediate conceptual understanding and representational competence of difficult concepts in statics. It investigates how we can best use touch technologies to help students connect system behaviors in terms of governing forces and their different representational forms. This proposal focuses on the following specific research questions (RQs): 1. To what extent do haptic-based learning experiences improve student conceptual understanding and representational fluency? Working hypothesis: the force feedback of haptic devices reinforces representations (mathematical, visual) of mechanics systems and improves conceptual understanding. 2. How do the short-term, long-term, and transfer learning gains between visual-only-enhanced, physical manipulative-enhanced, and haptic-enhanced learning activities compare? Working hypothesis: students experience greater learning gains when instruction includes haptic devices. 3. What are the differences in students' explanations and representations of experienced phenomena before and after using the haptic-based learning experiences? Working hypothesis: haptic devices and learning experiences provide a new platform on which students can build understanding, and provide a new vocabulary for articulating device structure, function, and performance. The newly derived knowledge will inform our understanding about how students "learn by touch" as well as our understanding of the interplay between conceptual understanding and representational competence. Our long-term goal is to identify the extent to which interacting with haptic-based learning experiences (HABLE) mediates students' conceptual understanding and representational fluency of difficult concepts in statics.
基于触觉的学习经验作为工程教育中概念理解和表达流畅性的认知中介静力学是几个工程学科的主干课程,是材料动力学和力学的直接先决条件,也是工程结构设计的关键参与者。研究人员发现,静力学是学生在后续核心课程(因此影响工程方面的留存)以及实际设计顶峰课程中取得成功的主要障碍。众所周知,学生在进入静力学时会产生一些传统教学中无法纠正的错误概念。这个项目调查了反馈设备的使用,也就是所谓的触觉,在这种设备中,学生可以操纵计算机生成的结构,并感受到产生的力。假设触觉设备的使用将为学生提供具体的反馈,帮助他们更好地理解静力学。这个项目的目标是工程教育中的一个基础性话题,众所周知,这个话题会对未来的表现和留存产生重大影响。这项研究的结果与机构及其学生广泛相关,因为基本上所有机械、民用、航空航天和生物医学学科的学生都学习静力学。同样,这项研究的产品为科学和工程中的相关概念(如浮力、电磁和动力学等)的学习干预提供了信息。本研究通过在强调静态错误概念的实验室实验中探索视觉-触觉模拟的具体启示和限制,促进了对触觉中介学习的理解。使用力反馈设备进行视觉触觉模拟用于教育是及时的,但还没有得到充分的研究。这项研究大大扩展了社区对使用触觉设备教授困难概念的负担和限制的理解。按照基于设计的研究方法,本项目开发了关于基于触觉的学习体验如何调节静态中困难概念的概念理解和表征能力的新知识。它研究了如何最好地使用触摸技术来帮助学生根据控制力及其不同的表征形式将系统行为联系起来。本研究的重点在于以下几个具体的研究问题:1.基于触觉的学习体验在多大程度上提高了学生的概念理解和表征流畅性?工作假设:触觉设备的力反馈加强了对力学系统的表示(数学、视觉),并提高了概念理解。2.在视觉强化学习活动、物理操作强化学习活动和触觉强化学习活动之间,短期、长期和迁移学习收益的比较如何?工作假设:当教学包括触觉设备时,学生会体验到更大的学习收益。3.使用触觉学习体验前后,学生对体验现象的解释和表征有何不同?工作假设:触觉设备和学习体验提供了一个新的平台,学生可以在上面建立理解,并提供了一个表达设备结构、功能和性能的新词汇。新获得的知识将使我们了解学生如何通过触摸学习,以及我们对概念理解和表征能力之间的相互作用的理解。我们的长期目标是确定与基于触觉的学习体验(HABLE)的互动在多大程度上中介了学生对静态学中困难概念的概念理解和表征流畅性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alejandra Magana-de-Leon其他文献

Alejandra Magana-de-Leon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alejandra Magana-de-Leon', 18)}}的其他基金

An AI-Augmented Phenomenographic Approach to Conceptualizing Undergraduate Students Experiences of Intercultural Team Cognition in STEM
一种人工智能增强现象学方法来概念化本科生在 STEM 中的跨文化团队认知体验
  • 批准号:
    2219271
  • 财政年份:
    2022
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
Productive Online Teamwork Engagement Through Intelligent Mediation
通过智能调解进行高效的在线团队合作
  • 批准号:
    2113991
  • 财政年份:
    2021
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
CAREER: Authentic Modeling and Simulation Practices for Enhancing Model-Based Reasoning in Engineering Education
职业:用于增强工程教育中基于模型的推理的真实建模和仿真实践
  • 批准号:
    1449238
  • 财政年份:
    2015
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
Collaborative Research: SmartCAD: Guiding Engineering Design with Science Simulations
合作研究:SmartCAD:用科学模拟指导工程设计
  • 批准号:
    1503436
  • 财政年份:
    2015
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Continuing Grant
Computational Worked Examples for Scaffolding Student Representational Fluency
支架学生表征流畅性的计算工作示例
  • 批准号:
    1329262
  • 财政年份:
    2013
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
  • 批准号:
    24K04111
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
  • 批准号:
    2422698
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Continuing Grant
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
  • 批准号:
    2332121
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Cooperative Agreement
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
SBIR Phase I: Lightweight Learning-based Camera Image Signal Processing (ISP) for Photon-Limited Imaging
SBIR 第一阶段:用于光子限制成像的轻量级基于学习的相机图像信号处理 (ISP)
  • 批准号:
    2335309
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Research Grant
An investigation of the role of teacher intervention in effective digital game-based vocabulary learning
教师干预在有效的基于数字游戏的词汇学习中的作用的调查
  • 批准号:
    24K04078
  • 财政年份:
    2024
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了