Sequential Detection and Classification in 3D Computer Vision
3D 计算机视觉中的顺序检测和分类
基本信息
- 批准号:0929317
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problem of quickest detection and classification in the statistical behavior of sequential observations is a classical one, with numerous applications in engineering, economics and epidemiology. In today's fast-growing technologies new areas of applications constantly emerge. In particular, the automatic 3D image reconstruction and classification of urban scenes is a problem whose complexity still challenges computer scientists. It has traditionally been treated through the acquisition of data using laser-scanners, which produce high-resolution images, but can be very slow. It is thus essential to concentrate laser scanning only to the areas of interest, which leads to fast decision-making about areas of interest. This can save significant time and cost, while still producing high-resolution 3D images. The goal of this project is to develop and implement real-time algorithms for processing and analyzing 3D laser range data. The high-dimensional nature of the data is reduced by a clever innovative selection of a measurement model. Interdependent streams of observations are then processed by on-line parametric and non-parametric classification and detection techniques. And finally, new statistical models are used to capture obstacles in urban scenes. This provides a systematic treatment of the problems of fast and efficient 3D image classification using high-resolution laser data. The current proposal is expected to develop and establish a new line of possibilities for the traditional quickest detection and classification techniques. This project promises to expand the applications of classical sequential statistics to the area of 3D Computer vision, thus carving the road for the creation of new synergistic interdisciplinary research and education teams of computer scientists and statisticians with well-defined common goals. Combining the expertise of these two communities is expected to lead to more sophisticated technology and software for the acquisition and processing of 3D data that comes from laser scanners. This project creates a stimulating research environment for undergraduate students, motivating them to seek advanced studies on the interdisciplinary frontier of mathematics and computer science. It also provides a framework for innovating the curriculum at Brooklyn College, a minority-serving institution, through the development of interdisciplinary courses.
序列观测统计行为的最快检测和分类问题是一个经典问题,在工程、经济和流行病学中有着广泛的应用。 在当今快速发展的技术中,新的应用领域不断涌现。特别是,城市场景的自动三维图像重建和分类是一个复杂的问题,仍然挑战计算机科学家。 传统上,它是通过使用激光扫描仪采集数据来处理的,激光扫描仪可以产生高分辨率的图像,但速度可能非常慢。因此,必须将激光扫描仅集中到感兴趣的区域,这导致对感兴趣区域的快速决策。这可以节省大量的时间和成本,同时仍然可以生成高分辨率的3D图像。 该项目的目标是开发和实现实时算法,用于处理和分析3D激光测距数据。通过巧妙地选择创新的测量模型,减少了数据的高维性质。然后,通过在线参数和非参数分类和检测技术来处理相互依赖的观测流。最后,新的统计模型被用来捕捉城市场景中的障碍物。这提供了一个系统的处理问题的快速和有效的三维图像分类使用高分辨率的激光数据。目前的建议预计将为传统的最快检测和分类技术开发和建立一系列新的可能性。该项目有望将经典序列统计的应用扩展到3D计算机视觉领域,从而为创建具有明确共同目标的计算机科学家和统计学家的新的协同跨学科研究和教育团队开辟道路。结合这两个社区的专业知识,预计将导致更复杂的技术和软件,用于采集和处理来自激光扫描仪的3D数据。该项目为本科生创造了一个刺激的研究环境,激励他们寻求数学和计算机科学跨学科前沿的高级研究。它还提供了一个框架,通过开发跨学科课程,创新布鲁克林学院这一少数群体服务机构的课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olympia Hadjiliadis其他文献
A Speed-based Estimator of Signal-to-Noise Ratios
- DOI:
10.1007/s11009-025-10150-0 - 发表时间:
2025-03-31 - 期刊:
- 影响因子:1.000
- 作者:
Yuang Song;Olympia Hadjiliadis - 通讯作者:
Olympia Hadjiliadis
Olympia Hadjiliadis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olympia Hadjiliadis', 18)}}的其他基金
Collaborative Research: ATD: Sequential quickest detection and identification of multiple co-dependent epidemic outbreaks
合作研究:ATD:连续最快地检测和识别多个相互依赖的流行病爆发
- 批准号:
1606505 - 财政年份:2015
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Sequential quickest detection and identification of multiple co-dependent epidemic outbreaks
合作研究:ATD:连续最快地检测和识别多个相互依赖的流行病爆发
- 批准号:
1222526 - 财政年份:2012
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
FY 2023 SBIR TOPIC 402 PHASE II. ENHANCE THE PERFORMANCE OF THE AI FOR LYMPH NODE DETECTION, SEGMENTATION AND MEASUREMENTS AND DEVELOP ADDITIONAL AI MODELS FOR MALIGNANCY CLASSIFICATION LEVERAGING MU
2023 财年 SBIR 主题 402 第二阶段。
- 批准号:
10928777 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)
CDS
- 批准号:
2308174 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 9.99万 - 项目类别:
Drivers' cognitive load detection through ocular metrics classification for the development on Driver Monitoring Systems
通过视觉指标分类检测驾驶员的认知负荷,以开发驾驶员监控系统
- 批准号:
DGECR-2022-00477 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Discovery Launch Supplement
Broadband sensor array measurements, signal processing, detection and classification of rare events
宽带传感器阵列测量、信号处理、罕见事件的检测和分类
- 批准号:
RGPIN-2019-04902 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Discovery Grants Program - Individual
Drivers' cognitive load detection through ocular metrics classification for the development on Driver Monitoring Systems
通过视觉指标分类检测驾驶员的认知负荷,以开发驾驶员监控系统
- 批准号:
RGPIN-2022-03490 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Discovery Grants Program - Individual
A novel approach for landform classification based on salience detection integrating expert knowledge and deep learning
结合专家知识和深度学习的基于显着性检测的地貌分类新方法
- 批准号:
RGPIN-2022-03885 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Discovery Grants Program - Individual
OCE-PRF Chemical Imaging for Molecular Detection and Classification of Microplastics and their Influence on Zebrafish
用于微塑料分子检测和分类的 OCE-PRF 化学成像及其对斑马鱼的影响
- 批准号:
2205819 - 财政年份:2022
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant














{{item.name}}会员




