Ultra-widebandgap Ga2O3 power devices for next generation power electronics
用于下一代电力电子的超宽带隙 Ga2O3 功率器件
基本信息
- 批准号:1607833
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Power electronics, in contrast to the electronics in laptops and smart phones, controls and handles the flow of power. Power electronics is the enabling technology for integration of renewable energy sources such as wind, solar, and geothermal to the future energy grid for both energy and environmental security. In addition, power electronics has a critical role in power efficient electric and hybrid cars. At the heart of power electronics is a power transistor that switches the power on and off. Energy is lost as heat during this process. Widebandgap semiconductors enable new power electronics technology that can significantly reduce the energy losses than the present silicon based technology. A new widebandgap semiconductor, gallium oxide, is investigated here for efficient power electronics. The fundamental properties of this novel widebandgap semiconductor will be explored using advanced scientific methodology. Studies will also be carried out to develop a technology to change the electrical conductivity of the semiconductor, which is essential to building the power transistor. These studies will also increase the understanding of the widebandgap semiconductor that have potential application in other fields. In addition to the materials properties, electrical testing of the transistors will be carried out to evaluate the speed of the power transistors.This project will position US at the forefront of power electronics innovation and propel the recent continued growth of the power electronics industry with positive outcomes on the US economy. The environmental and energy security of US will be enhanced due to high efficiency in switching and reduced greenhouse gases. The research opportunity given to undergraduate and graduate students will help build the skills of the future workforce for knowledge based economy and maintain the economic competitiveness of the US. The research effort will be integrated with educational outreach activities for undergraduates, high-school students and under-represented students in science and engineering. It will increase the participation of underrepresented minority and women in the field of science and engineering enhancing US competitiveness in science and engineering.The objectives of the proposal is to develop a fundamental understating of the materials properties of the emerging gallium oxide widebandgap semiconductor and develop a high voltage power transistor. N-type doping and isolation doping by ion-implantation will be investigated. The doped films will be characterized by advanced materials characterization techniques including secondary ion microscopy (SIMS), Rutherford backscattering (RBS) and also by electrical test structures. The doping technology enables the engineering of the electric field profile in the power transistor to increase the breakdown voltage. In addition the electron transport properties and interface electrical properties will be characterized. Building upon the fundamental studies, high voltage power transistors will be fabricated. The switching speed of the power transistors will be characterized by double pulse method. These studies will be advance the understanding of the widebandgap semiconductor properties. In addition, an accurate comparison of the technology with other widebandgap semiconductors can be made.
与笔记本电脑和智能手机中的电子设备不同,电力电子设备控制和处理电力流动。电力电子技术是将风能、太阳能和地热能等可再生能源整合到未来能源网络中的使能技术,以实现能源和环境安全。此外,电力电子在节能电动汽车和混合动力汽车中起着至关重要的作用。电力电子学的核心是一个开关电源的功率晶体管。在这个过程中能量以热的形式损失掉。宽带隙半导体使新的电力电子技术能够比目前的硅基技术显著降低能量损失。本文研究了一种用于高效电力电子的新型宽带隙半导体——氧化镓。这种新型宽带隙半导体的基本特性将采用先进的科学方法进行探索。研究还将开发一种技术来改变半导体的导电性,这对制造功率晶体管至关重要。这些研究也将增加对宽带隙半导体在其他领域的潜在应用的认识。除了材料性能外,还将对晶体管进行电学测试,以评估功率晶体管的速度。该项目将使美国处于电力电子创新的前沿,并推动电力电子行业近期的持续增长,对美国经济产生积极影响。由于转换效率高,温室气体减少,美国的环境和能源安全将得到加强。为本科生和研究生提供的研究机会将有助于为知识经济培养未来劳动力的技能,并保持美国的经济竞争力。这项研究工作将与面向本科生、高中生和理工科代表性不足学生的教育推广活动结合起来。它将增加未被充分代表的少数民族和妇女在科学和工程领域的参与,增强美国在科学和工程领域的竞争力。该提案的目标是对新兴的氧化镓宽带隙半导体的材料特性进行基本的理解,并开发一种高压功率晶体管。研究了n型掺杂和离子注入的隔离掺杂。掺杂薄膜将通过先进的材料表征技术进行表征,包括二次离子显微镜(SIMS)、卢瑟福后向散射(RBS)以及电测试结构。利用掺杂技术可以对功率晶体管中的电场分布进行改造,从而提高击穿电压。此外,电子输运性质和界面电学性质将被表征。在基础研究的基础上,高压功率晶体管将被制造出来。功率晶体管的开关速度将用双脉冲法来表征。这些研究将促进对宽带隙半导体特性的理解。此外,可以将该技术与其他宽带隙半导体进行准确的比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Uttam Singisetti其他文献
Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement
- DOI:
10.1557/jmr.2017.398 - 发表时间:
2017-11-01 - 期刊:
- 影响因子:2.900
- 作者:
Krishnendu Ghosh;Uttam Singisetti - 通讯作者:
Uttam Singisetti
Uttam Singisetti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Uttam Singisetti', 18)}}的其他基金
Conference: 6th US Gallium Oxide Workshop
会议:第六届美国氧化镓研讨会
- 批准号:
2324760 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MRI: Acquisition of Magento-optical-high-frequency cryogen free probe station for research and education
MRI:采购 Magento 光学高频无冷冻剂探针台用于研究和教育
- 批准号:
2215937 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
ASCENT: Enabling efficient high power grid applications by high voltage rating ultrawidebandgap transistors
ASCENT:通过高额定电压超宽带隙晶体管实现高效的高电网应用
- 批准号:
2231026 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Beta-Ga2O3 high voltage power MOSFETs using metal-organic chemical vapor deposition
合作研究:使用金属有机化学气相沉积的 Beta-Ga2O3 高压功率 MOSFET
- 批准号:
2019749 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MRI:Acquisition of Ultra high Performance Electron Beam Lithography System for the Western New York Region
MRI:为纽约西部地区采购超高性能电子束光刻系统
- 批准号:
1919798 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
Investigation of the Novel Characteristics of Widebandgap Semiconductor Materials Grown by Multi-Phase Epitaxy
多相外延生长的宽带隙半导体材料新特性的研究
- 批准号:
11650005 - 财政年份:1999
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)