Instrument Development: A nanoscale, unbleachable orientation and position sensor for biophysical imaging

仪器开发:用于生物物理成像的纳米级、不可漂白的方向和位置传感器

基本信息

  • 批准号:
    1607869
  • 负责人:
  • 金额:
    $ 39.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

With support from the Divisions of Chemistry (Chemical Measurement and Imaging) and Biological Infrastructure (Instrument Development for Biological Research), Drs. Kai-Mei Fu and Paul Wiggins and their groups at the University of Washington are looking to build on a generation of single-molecule techniques enabling visualization of biochemical processes one molecule at a time. These methods facilitate a mechanistic understanding of the fundamental biology, chemistry and physics underlying many of the most important biological processes in the cell. Specifically, the team is developing a novel sensor for biophysical applications that can simultaneously measure the three-dimensional position and orientation of a nanoparticle probe. The proposed Magnetic-Probe-Imaging platform (MagPI) is expected to be widely-applicable to a range of biophysical problems where orientation and position are both of significance to biological function. Research results will be disseminated broadly through local, national, and international conferences, publications, and laboratory research websites as well as through an advertised technical workshop on the method to facilitate its adoption by the chemical, biological, and biomedical research communities. This work will also support graduate and undergraduate student training in a rich, interdisciplinary environment that combines physics, chemistry, engineering, and biology. It will provide support for a focused unit on "Biosensing and the Five Senses" that will be developed for an elementary-school science outreach program, with lesson plans available to the public through the outreach websiteThe research addresses three specific aims: (i) the targeted development of a MagPI to complement commercially-available pre-functionalized nanoparticles for ease of adoption; (ii) the integration of this platform into a Tethered-Particle-Motion (TPM) assay to demonstrate platform tractability in biophysical contexts; and (iii) a demonstration of the potential for this platform by detecting expected interconversions between distinct transcription-factor-DNA complex conformations in TPM assays. The MagPI probe is unbleachable and unblinking and therefore is ideally suited to applications where precision tracking of probe 3D-position and orientation could provide significant new insights, but long-timescale and high-temporal resolution imaging is required which precludes the use of single-molecule fluorescent probes. The probe and sensor is complementary and compatible with existing contrast generation mechanisms, including brightfield, scattering, and fluorescence. Orientation and position sensing are performed by imaging the magnetic dipole field generated by the nano-particle probe. The physical mechanism for magnetic-field imaging is the B-field-induced shift of the photo-luminescence intensity of nitrogen-vacancy centers in a diamond sensor.
在化学(化学测量和成像)和生物基础设施(生物研究仪器开发)部门的支持下,华盛顿大学的Kai-Mei Fu博士和Paul Wiggins博士及其团队正在寻求建立一代单分子技术,从而实现一次一个分子的生化过程可视化。 这些方法促进了对细胞中许多最重要的生物过程的基础生物学、化学和物理学的机械理解。 具体来说,该团队正在开发一种用于生物物理应用的新型传感器,可以同时测量纳米颗粒探针的三维位置和方向。所提出的磁探针成像平台(MagPI)预计将广泛适用于一系列生物物理问题,其中方向和位置都对生物功能具有重要意义。 研究结果将通过地方、国家和国际会议、出版物和实验室研究网站以及通过关于该方法的广告技术研讨会广泛传播,以促进化学、生物和生物医学研究界采用该方法。 这项工作还将支持研究生和本科生在一个丰富的,跨学科的环境,结合物理,化学,工程和生物学的培训。它将为一个关于“生物传感和五种感觉”的重点单元提供支持,该单元将为小学科学外展计划开发,并通过外展网站向公众提供课程计划。(ii)将该平台整合到系留粒子运动(TPM)测定中,以证明平台在生物物理背景下的易处理性;以及(iii)通过检测TPM测定中不同转录因子-DNA复合物构象之间的预期相互转化来证明该平台的潜力。MagPI探针是不可漂白和不闪烁的,因此非常适合于精确跟踪探针3D位置和方向的应用,可以提供重要的新见解,但需要长时间尺度和高时间分辨率成像,这排除了单分子荧光探针的使用。探针和传感器与现有的对比度生成机制(包括明场、散射和荧光)互补并兼容。取向和位置感测通过对由纳米粒子探针产生的磁偶极场进行成像来执行。磁场成像的物理机制是B场诱导金刚石传感器中氮空位中心光致发光强度的移动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai-Mei Fu其他文献

Direct measurement of single molecule DNA bend energy on short length scales with nanoscale magnetic torque balance
  • DOI:
    10.1016/j.bpj.2021.11.2390
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Isaac M.W. Shelby;Zeeshawn Kazi;Kai-Mei Fu;Paul A. Wiggins
  • 通讯作者:
    Paul A. Wiggins

Kai-Mei Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai-Mei Fu', 18)}}的其他基金

Conference: 2024 Defects in Semiconductors GRC/GRS
会议:2024 年半导体缺陷 GRC/GRS
  • 批准号:
    2414677
  • 财政年份:
    2024
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
Semiconductor electron-nuclear spin qubits with optical access
具有光学访问功能的半导体电子-核自旋量子位
  • 批准号:
    2212017
  • 财政年份:
    2022
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Continuing Grant
EAGER: PHY-GRS: A Diamond Quantum Control Testbed
EAGER:PHY-GRS:钻石量子控制测试台
  • 批准号:
    2233120
  • 财政年份:
    2022
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
NRT-QL: Accelerating Quantum-Enabled Technologies
NRT-QL:加速量子技术
  • 批准号:
    2021540
  • 财政年份:
    2020
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
GRC Defects in Semiconductors: Defect Formation, Characterization, Control and Utilization
半导体中的 GRC 缺陷:缺陷形成、表征、控制和利用
  • 批准号:
    2023837
  • 财政年份:
    2020
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
QLCI-CG: Institute for Hybrid Quantum Systems
QLCI-CG:混合量子系统研究所
  • 批准号:
    1936932
  • 财政年份:
    2019
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
Donor Electron Spins in Direct Bandgap Semiconductors for Quantum Networks
用于量子网络的直接带隙半导体中的供体电子自旋
  • 批准号:
    1820614
  • 财政年份:
    2018
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
A Hybrid Photonics Device for Efficient Quantum Entanglement
用于高效量子纠缠的混合光子器件
  • 批准号:
    1807566
  • 财政年份:
    2018
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
Student Travel Support for the 11th Workshop on the Principles and Applications of Control in Quantum Systems, July 11-17, 2017 in Seattle, WA.
为 2017 年 7 月 11 日至 17 日在华盛顿州西雅图举行的第 11 届量子系统控制原理与应用研讨会提供学生旅行支持。
  • 批准号:
    1743298
  • 财政年份:
    2017
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant
EFRI ACQUIRE: An Integrated Quantum Communication Transmission Node
EFRI ACQUIRE:集成量子通信传输节点
  • 批准号:
    1640986
  • 财政年份:
    2016
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

A novel framework for nanomedicine development
纳米医学开发的新框架
  • 批准号:
    10715013
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
Regulatory Mechanisms of Collagen XII in Establishing Achilles Tendon Hierarchical Structure and Function in Postnatal Development and Healing
XII 胶原蛋白在建立跟腱层次结构和产后发育和愈合中功能的调节机制
  • 批准号:
    10750621
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
Development of Nanoscale Viscoelasticity Measurement Method Based on Fluctuation-Dissipation Theorem
基于涨落耗散定理的纳米级粘弹性测量方法的发展
  • 批准号:
    23H02021
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a sample preparation protocol for 3D kidney ultrastructural analysis and immunolabeling by light microscopy
开发用于 3D 肾脏超微结构分析和光学显微镜免疫标记的样品制备方案
  • 批准号:
    10760947
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
Development of methods for highly multiplexed quantification of cancer proteomes using large-scale nanobody libraries
使用大规模纳米抗体库开发癌症蛋白质组高度多重定量的方法
  • 批准号:
    10714023
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
Development of a nanoscale, near-infrared spectroscopy imaging tool for in situ, rapid and label-free analysis of single extracellular vesicles
开发纳米级近红外光谱成像工具,用于单个细胞外囊泡的原位、快速、无标记分析
  • 批准号:
    BB/X004449/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Research Grant
Development of a Versatile Multiplexing Nanoscopy Platform for Cell Biology
细胞生物学多功能多重纳米显微镜平台的开发
  • 批准号:
    10753760
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
Resource Development Core
资源开发核心
  • 批准号:
    10754082
  • 财政年份:
    2023
  • 资助金额:
    $ 39.08万
  • 项目类别:
Development of next-generation quantum dynamical simulation methods with applications to charge and exciton transport in nanoscale molecular materials
开发下一代量子动力学模拟方法,应用于纳米级分子材料中的电荷和激子传输
  • 批准号:
    2729533
  • 财政年份:
    2022
  • 资助金额:
    $ 39.08万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了