Integrable Probability
可积概率
基本信息
- 批准号:1607901
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project focuses on studying large time and scale behavior for a variety of probabilistic systems. Many of those were designed to model different natural processes such as bacterial growth, crystal melting, very cold gases at atomic levels, etc. An accurate analysis at large times or scales is typically very difficult, and the project concentrates on models with additional algebraic structure that originate in seemingly unrelated areas of mathematics. This structure helps to discover new phenomena that tend to be universal (i.e., present in a very wide range of systems). As a result, using sophisticated mathematical tools, the principal investigator seeks to find new universal laws that play the role of the famous and familiar bell curve law and that can often be observed through physical and numerical experiments.The goal of the emerging field of integrable probability is to identify and analyze exactly solvable probabilistic models. The models and results are often easy to describe, yet difficult to find, and they carry essential information about broad universality classes of stochastic processes. The project aims at developing a bridge between deep algebraic and representation theoretic structures on one end, and probabilistic systems on the other end, that would allow to utilize the former in order to discover and study the latter. The framework of Macdonald processes introduced and developed in the last five years has been quite successful on this path, and it continues to grow. Known applications include interacting particle systems, random growing interfaces in (1+1) and (2+1) dimensions, random matrices and log-gases, and directed polymers in random media. The framework is now poised to expand to include the theory of solvable lattice models of statistical mechanics, offering completely new perspective and new results in this well-established domain.
该项目的重点是研究各种概率系统的大时间和大尺度行为。其中许多是为了模拟不同的自然过程,如细菌生长,晶体熔化,原子水平的非常冷的气体等,在大的时间或规模的准确分析通常是非常困难的,该项目集中在模型与其他代数结构,起源于看似无关的数学领域。这种结构有助于发现新的现象,往往是普遍的(即,存在于非常广泛的系统中)。因此,首席研究员使用复杂的数学工具,试图找到新的普遍规律,发挥著名的和熟悉的钟形曲线定律的作用,并经常可以通过物理和数值实验观察到。可积概率的新兴领域的目标是识别和分析精确可解的概率模型。模型和结果往往很容易描述,但很难找到,他们携带的基本信息广泛的普适性类随机过程。该项目的目的是在一端的深层代数和表示理论结构与另一端的概率系统之间建立一座桥梁,这将允许利用前者来发现和研究后者。在过去五年中引入和发展的麦克唐纳进程框架在这条道路上取得了相当成功,并继续发展。已知的应用包括相互作用的粒子系统,(1 + 1)和(2 + 1)维的随机生长界面,随机矩阵和对数气体,以及随机介质中的定向聚合物。该框架现在准备扩展到包括统计力学的可解晶格模型理论,在这个成熟的领域提供全新的视角和新的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexei Borodin其他文献
Log-Gamma Polymer Free Energy Fluctuations via a Fredholm Determinant Identity
- DOI:
10.1007/s00220-013-1750-x - 发表时间:
2013-07-03 - 期刊:
- 影响因子:2.600
- 作者:
Alexei Borodin;Ivan Corwin;Daniel Remenik - 通讯作者:
Daniel Remenik
Gaussian asymptotics of discrete $\beta $ -ensembles
- DOI:
10.1007/s10240-016-0085-5 - 发表时间:
2016-06-14 - 期刊:
- 影响因子:3.500
- 作者:
Alexei Borodin;Vadim Gorin;Alice Guionnet - 通讯作者:
Alice Guionnet
Colored line ensembles for stochastic vertex models
- DOI:
10.1007/s00029-024-00989-5 - 发表时间:
2024-11-07 - 期刊:
- 影响因子:1.200
- 作者:
Amol Aggarwal;Alexei Borodin - 通讯作者:
Alexei Borodin
Anisotropic $$(2+1)$$ d growth and Gaussian limits of q-Whittaker processes
- DOI:
10.1007/s00440-017-0809-6 - 发表时间:
2017-10-28 - 期刊:
- 影响因子:1.600
- 作者:
Alexei Borodin;Ivan Corwin;Patrik L. Ferrari - 通讯作者:
Patrik L. Ferrari
Biased $$2 \times 2$$ periodic Aztec diamond and an elliptic curve
- DOI:
10.1007/s00440-023-01195-8 - 发表时间:
2023-02-14 - 期刊:
- 影响因子:1.600
- 作者:
Alexei Borodin;Maurice Duits - 通讯作者:
Maurice Duits
Alexei Borodin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexei Borodin', 18)}}的其他基金
Conference: ASE60: Synergistic Interactions between Theory and Computation
会议:ASE60:理论与计算之间的协同相互作用
- 批准号:
2324599 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
- 批准号:
1664619 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Time-Dependent Determinantal Point Processes
瞬态决定点过程
- 批准号:
0707163 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Isomonodromy Transformations of Difference Equations
差分方程的等单变换
- 批准号:
0402047 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Algebraic integrable probability theory
代数可积概率论
- 批准号:
22KJ2770 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Integrable Probability and Universality in Mathematical Physics and Machine Learning
数学物理和机器学习中的可积概率和普适性
- 批准号:
RGPIN-2022-04106 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Integrable Probability and Universality in Mathematical Physics and Machine Learning
数学物理和机器学习中的可积概率和普适性
- 批准号:
DGECR-2022-00450 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Launch Supplement
Enumeration, random tilings and integrable probability
枚举、随机平铺和可积概率
- 批准号:
574832-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Determinantal structures in the integrable probability
可积概率中的行列式结构
- 批准号:
20K03626 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Groups, Special Functions, and Integrable Probability
量子群、特殊函数和可积概率
- 批准号:
2039183 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Analysis of discrete Integrable systems by probability theory based on Pitman's transformation
基于Pitman变换的离散可积系统概率论分析
- 批准号:
19H01792 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
- 批准号:
1664650 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
- 批准号:
1664617 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Integrable Probability
FRG:协作研究:可积概率
- 批准号:
1664531 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant