A new direction to achieve ultra-fast timing for positron emission tomography
实现正电子发射断层扫描超快定时的新方向
基本信息
- 批准号:9444922
- 负责人:
- 金额:$ 64.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:BiodistributionChargeClinicClinical ManagementClinical ResearchCollectionContrast MediaCrystallizationDetectionDiseaseDisease ManagementDoseElementsEnhancing LesionEventGenerationsGenetic RecombinationGoalsImageImageryImaging technologyIndividualIndustryInjectableIonizing radiationIonsLabelLasersLearningLesionLightLutetiumMethodsModernizationMolecular ProfilingMonitorNatureNoiseOperating SystemOpticsPatientsPerformancePhasePhotonsPhysiologic pulsePositronPositron-Emission TomographyPredispositionProcessProductionPropertyPumpRadiationRadioisotopesRefractive IndicesResearchResolutionRoentgen RaysRoleScanningSignal TransductionSourceSpeedSystemTelecommunicationsThree-Dimensional ImageTimeTracerWidthWorkbasebiological researchcost effectivedesigndetectorelectric fieldimprovedionizationmigrationmultidisciplinarynon-invasive imagingnoveloptical switchphoton-counting detectorscale uptemporal measurementtwo-photon
项目摘要
PROJECT SUMMARY/ABSTRACT
We propose to explore a new mechanism of ionizing radiation detection for positron emission tomography
(PET) using the modulation of optical properties instead of scintillation, with the ultimate goal to achieve less
than 10 picosecond (ps) annihilation photon pair coincidence time resolution, which is an order of magnitude
better than possible with state-of-the-art scintillation based PET detectors.
PET is a non-invasive imaging technology used every day throughout the world that enables visualization
and quantification of the molecular signatures of disease in living subjects in the clinic as well as in biological
research. A PET study comprises the collection of millions of annihilation photon pairs emitted from a
positron-emitting radionuclide-labeled contrast agent injected into the patient. The two-photon hits are recorded
by the system detectors and used to reconstruct a 3D image volume that represents the tracer biodistribution.
If successful, the proposed < 10 ps coincidence time resolution would represent a tremendous paradigm
shift for PET as it would drastically change the way a PET system operates. The resulting remarkable
time-of-flight (ToF) capability will bring substantial signal amplification over existing systems. The enormous
image signal-to-noise ratio (SNR) boost can be exploited to greatly enhance lesion detection, for example, for
lesions with low contrast-to-background ratio; significantly reduce both patient injected dose and patient scan
duration, potentially opening new clinical and research roles for which PET currently has no involvement at all;
or pave the way for completely new PET system designs with greatly improved spatial resolution.
In previous studies performed, we have shown that ionizing radiation can modulate optical properties, for
example, the refractive index, of a detector material. We have found that the modulation signal amplitude is
linearly dependent on both the event detection rate and average photon energy. In this project, we will work on
further exploring mechanisms of optical property modulation to detect individual 511 keV photon interactions,
and study the timing properties of this proposed detection concept with the goal to achieve < 10 ps coincidence
time resolution. We first propose to achieve the detection of individual 511 keV photons using the mechanism of
optical property modulation by developing novel methods to amplify the modulation signal and detection
systems with significantly improved sensitivity. Then we plan to study the intrinsic timing properties of the optical
property modulation process and explore methods to achieve < 10 ps coincidence time resolution for coincident
511 keV photon interactions. For the final aim, we will learn how to use this new mechanism of ionizing radiation
detection to build a practical, “tileable” ToF-PET detection element. This is an exciting multi-disciplinary project
that borrows ideas from the field of modern optics with a goal of enabling substantial improvements in ToF-PET
performance to drive important advances in the study and clinical management of disease.
项目总结/摘要
我们提出探索一种新的正电子发射断层扫描电离辐射探测机制
(PET)利用光学特性的调制代替闪烁,最终目的是实现更少的
小于10皮秒(ps)湮灭光子对符合时间分辨率,这是一个数量级
比最先进的基于闪烁的PET探测器更好。
PET是一种非侵入性成像技术,每天在世界各地使用,可以实现可视化
以及在临床和生物学中对活体受试者中疾病的分子特征进行定量
research. PET研究包括收集从一个光子发射的数百万个湮灭光子对。
注射到患者体内的正电子发射放射性核素标记的造影剂。双光子撞击被记录下来
并用于重建代表示踪剂生物分布的3D图像体积。
如果成功,所提出的< 10 ps符合时间分辨率将代表一个巨大的范例
这将极大地改变PET系统的运行方式。由此产生的非凡的
飞行时间(ToF)能力将在现有系统上带来显著的信号放大。的巨大
可以利用图像信噪比(SNR)提升来极大地增强病变检测,例如,
对比度与背景比低的病变;显著降低患者注射剂量和患者扫描
持续时间,可能会开辟新的临床和研究角色,PET目前根本没有参与;
或者为具有大大改进的空间分辨率的全新PET系统设计铺平道路。
在以前的研究中,我们已经表明,电离辐射可以调制光学性质,
例如,检测器材料的折射率。我们已经发现,调制信号幅度是
线性依赖于事件检测率和平均光子能量。在这个项目中,我们将致力于
进一步探索光学性质调制的机制以检测单独的511 keV光子相互作用,
并研究了所提出的探测概念的定时特性,目标是实现< 10 ps的重合
时间分辨率我们首先提出使用以下机制来实现单个511 keV光子的探测:
通过开发新的方法来放大调制信号和检测光学特性调制
系统的灵敏度大大提高。然后,我们计划研究光的内在定时特性,
特性调制过程,并探索实现符合时间分辨率< 10 ps的方法,
511 keV光子相互作用。为了最终的目的,我们将学习如何使用这种新的电离辐射机制
ToF-PET探测器是一种实用的、“可拼接”的ToF-PET探测元件。这是一个令人兴奋的多学科项目
该技术借鉴了现代光学领域的思想,目标是实现ToF-PET的实质性改进。
性能,以推动疾病的研究和临床管理的重要进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CRAIG S LEVIN其他文献
CRAIG S LEVIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CRAIG S LEVIN', 18)}}的其他基金
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
- 批准号:
10509318 - 财政年份:2022
- 资助金额:
$ 64.71万 - 项目类别:
Translation and Validation of a Radiofrequency-Penetrable PET insert for Simultaneous PET/MRI imaging of Neurological Disorders
用于神经系统疾病同步 PET/MRI 成像的射频可穿透 PET 插入物的转化和验证
- 批准号:
10616704 - 财政年份:2022
- 资助金额:
$ 64.71万 - 项目类别:
Translation and Validation of a Radiofrequency-Penetrable PET insert for Simultaneous PET/MRI imaging of Neurological Disorders
用于神经系统疾病同步 PET/MRI 成像的射频可穿透 PET 插入物的转化和验证
- 批准号:
10365492 - 财政年份:2022
- 资助金额:
$ 64.71万 - 项目类别:
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
- 批准号:
10685592 - 财政年份:2022
- 资助金额:
$ 64.71万 - 项目类别:
RF-penetrable PET ring for acquiring simultaneous time-of-flight PET and MRI data
可穿透射频的 PET 环,用于同时采集飞行时间 PET 和 MRI 数据
- 批准号:
10268119 - 财政年份:2020
- 资助金额:
$ 64.71万 - 项目类别:
Technologies to drastically boost photon sensitivity for brain-dedicated PET
大幅提高大脑专用 PET 光子灵敏度的技术
- 批准号:
9420111 - 财政年份:2017
- 资助金额:
$ 64.71万 - 项目类别:
Exploring a promising design for the next generation time-of-flight PET detector
探索下一代飞行时间 PET 探测器的有前途的设计
- 批准号:
10171564 - 财政年份:2017
- 资助金额:
$ 64.71万 - 项目类别:
Exploring a promising design for the next generation time-of-flight PET detector
探索下一代飞行时间 PET 探测器的有前途的设计
- 批准号:
9918874 - 财政年份:2017
- 资助金额:
$ 64.71万 - 项目类别:
Technologies to drastically boost photon sensitivity for brain-dedicated PET
大幅提高大脑专用 PET 光子灵敏度的技术
- 批准号:
9568754 - 财政年份:2017
- 资助金额:
$ 64.71万 - 项目类别:
Stanford Molecular Imaging Scholars (SMIS) Program
斯坦福大学分子成像学者 (SMIS) 计划
- 批准号:
10410895 - 财政年份:2016
- 资助金额:
$ 64.71万 - 项目类别:
相似国自然基金
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
Sema3E在CHARGE综合症中的作用及机制研究
- 批准号:81160144
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
- 批准号:
2325147 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Standard Grant
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
- 批准号:
2400727 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Standard Grant
STTR Phase I: Potassium Ion Battery with Intermediate Charge Rate Competes with Lithium Ferrophosphate (LFP)-based Lithium-Ion Batteries (LIBs)
STTR 第一阶段:具有中等充电速率的钾离子电池与基于磷酸铁锂 (LFP) 的锂离子电池 (LIB) 竞争
- 批准号:
2332113 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Standard Grant
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
- 批准号:
2347542 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Standard Grant
Charge Patterning and Molecular Interactions in the Phase Behavior of Polyelectrolyte/Particle Solutions
聚电解质/颗粒溶液相行为中的电荷模式和分子相互作用
- 批准号:
2347031 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Continuing Grant
Charge-Controlled Materials for Separations of Important Resources
用于分离重要资源的电荷控制材料
- 批准号:
DP240103089 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Discovery Projects
NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
- 批准号:
2308860 - 财政年份:2023
- 资助金额:
$ 64.71万 - 项目类别:
Standard Grant
CAREER: Interplay of sliding ferroelectricity, spin and charge orderings in layered quantum materials
职业:层状量子材料中滑动铁电性、自旋和电荷排序的相互作用
- 批准号:
2237761 - 财政年份:2023
- 资助金额:
$ 64.71万 - 项目类别:
Continuing Grant
A Component-wise Model for Understanding Spin-Charge Interactions in Nanoparticle Solids Using Targeted Synthesis, Magnetometry, and Magnetoresistance
利用靶向合成、磁力测定和磁阻来理解纳米颗粒固体中自旋电荷相互作用的组件模型
- 批准号:
2322706 - 财政年份:2023
- 资助金额:
$ 64.71万 - 项目类别:
Continuing Grant
EAGER: Controlling active site arrangement in zeolites through OSDA charge distribution
EAGER:通过 OSDA 电荷分布控制沸石中的活性位点排列
- 批准号:
2331027 - 财政年份:2023
- 资助金额:
$ 64.71万 - 项目类别:
Standard Grant














{{item.name}}会员




