Phase Transitions and Scaling Limits in Lattice Models
晶格模型中的相变和尺度限制
基本信息
- 批准号:1608896
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Phase transitions, ranging from familiar occurrences such as liquid water freezing into ice to technologically critical phenomena such as transition to superconductivity, are ubiquitous throughout nature, have been an active topic in mathematical and physical research for as long as science has existed, and continue to pose important research challenges. Lattice models, constructed to study natural phase transitions, are probability distributions on subsets of graphs depending on continuous parameters. This research project will study the phase transition of several important lattice models, including (1) the constrained percolation model, which randomly assigns "0" or "1" to each vertex of a graph, satisfying constraints that represent aspects of molecular structure; and (2) the self-avoiding walk, which is a path on a graph visiting each vertex at most once, introduced as a model for long-chain polymers. The work will broaden and deepen the mathematical foundations of the subject, with potential important applications in theoretical physics and chemistry.The investigator aims to develop new theory concerning the phase transition of certain lattice models. Imposing constraints in the percolation model usually makes the model lose stochastic monotonicity, which, in the unconstrained case, is critical to study the phase transition described by the behavior of infinite clusters. One goal of the project is to develop new combinatorial and probabilistic techniques to study the behavior of infinite clusters without using stochastic monotonicity. Enumerating self-avoiding walks is typically difficult due to the non-Markovian structure. The connective constant and exponent of self-avoiding walks are fundamental properties of the underlying graph, yet can be identified for very few graphs. Another goal of this project is to obtain new information about connective constants and exponents for large classes of graphs, which may be achieved by analyzing harmonic functions on graphs. An analog to the central limit theorem in two dimensions is the limit shape behavior of height functions of certain lattice models at criticality, i.e. when the phase transition occurs. The investigator also plans to study the limit shape, using techniques from complex analysis and algebraic geometry.
相变,从熟悉的现象,如液态水冻结成冰的技术关键现象,如过渡到超导性,在自然界中无处不在,一直是数学和物理研究的一个活跃话题,只要科学存在,并继续构成重要的研究挑战。格子模型是为研究自然相变而构造的,是依赖于连续参数的图子集上的概率分布。本研究计划将研究几种重要的晶格模型的相变,包括(1)约束渗流模型,它随机分配“0”或“1”到图的每个顶点,满足代表分子结构方面的约束;和(2)自避免行走,这是一条在图上访问每个顶点最多一次的路径,作为长链聚合物的模型引入。这项工作将拓宽和深化该学科的数学基础,在理论物理和化学中具有潜在的重要应用。研究者的目标是发展有关某些晶格模型相变的新理论。在渗流模型中施加约束通常会使模型失去随机单调性,而在无约束的情况下,这对于研究无限团簇行为所描述的相变是至关重要的。该项目的一个目标是开发新的组合和概率技术,以研究无限集群的行为,而不使用随机单调性。由于非马尔可夫结构,枚举自避免行走通常很困难。连接常数和自避免行走指数是底层图的基本性质,但可以确定为极少数图。这个项目的另一个目标是获得关于大类图的连接常数和指数的新信息,这可以通过分析图上的调和函数来实现。在二维中,中心极限定理的一个类似物是某些晶格模型的高度函数在临界状态(即相变发生时)的极限形状行为。研究人员还计划使用复分析和代数几何的技术来研究极限形状。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongyang Li其他文献
A hybrid approach of case-based reasoning and process reasoning to typical parts grinding process intelligent decision
案例推理与工艺推理相结合的典型零件磨削工艺智能决策
- DOI:
10.1080/00207543.2021.2010144 - 发表时间:
2021-12 - 期刊:
- 影响因子:9.2
- 作者:
Zhongyang Li;Zhaohui Deng;Zhiguang Ge;Lishu Lv;Jimin Ge - 通讯作者:
Jimin Ge
Synergistic solidification of dredged sediment using straw ash-lime-activator composites: Mechanical property and sustainability
采用秸秆灰 - 石灰 - 活化剂复合材料对疏浚底泥进行协同固化:力学性能与可持续性
- DOI:
10.1016/j.envres.2025.121999 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:7.700
- 作者:
Kai Zhang;Mingyue Jing;Haifeng Lu;Huan Dai;Zhongyang Li;Xiaoxuan Kong;Penghai Deng - 通讯作者:
Penghai Deng
Frequency and damping ratio assessment of high-rise buildings using an Automatic Model-Based Approach applied to real-world ambient vibration recordings
- DOI:
10.1016/j.ymssp.2015.12.022 - 发表时间:
2016-06-15 - 期刊:
- 影响因子:
- 作者:
Fatima Nasser;Zhongyang Li;Philippe Gueguen;Nadine Martin - 通讯作者:
Nadine Martin
Urease Inhibitors Weaken the Efficiency of Nitrification Inhibitors in Mitigating N2O Emissions from Soils Irrigated with Alternative Water Resources
- DOI:
10.1007/s11270-024-07670-9 - 发表时间:
2024-12-03 - 期刊:
- 影响因子:3.000
- 作者:
Zhen Tao;Zhongyang Li;Siyi Li;Lijuan Zhao;Andrew S. Gregory;Xiangyang Fan;Chuncheng Liu;Chao Hu;Yuan Liu - 通讯作者:
Yuan Liu
How peritectic melting forms bicontinuous microstructures
包晶熔化如何形成双连续微观结构
- DOI:
10.1016/j.actamat.2025.120917 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.300
- 作者:
Zhongyang Li;Lukas Lührs;Tobias Krekeler;Jörg Weissmüller - 通讯作者:
Jörg Weissmüller
Zhongyang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Ion signaling, cell transitions, and organ scaling during fin regeneration
鳍再生过程中的离子信号、细胞转变和器官缩放
- 批准号:
10639668 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Scaling Limits and Phase Transitions in Spatial Random Processes
空间随机过程中的尺度限制和相变
- 批准号:
1954343 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Large Scale Asymptotics of Random Spatial Processes: Scaling Exponents, Limit Shapes, and Phase Transitions
随机空间过程的大规模渐近:缩放指数、极限形状和相变
- 批准号:
1855688 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Study on highly accurate analysis and critical universality for topological phase transitions by the use of the improved dynamical scaling
利用改进的动力学标度研究拓扑相变的高精度分析和临界普适性
- 批准号:
19K03666 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
10115761 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Transpositional scaling and niche transitions restore organ size and shape during zebrafish fin regeneration
斑马鱼鳍再生过程中,转位缩放和生态位转变可恢复器官大小和形状
- 批准号:
9895229 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Processes of coalescence and fragmentation: phase transitions, scaling limits and self-organised criticality
聚结和分裂过程:相变、尺度限制和自组织临界性
- 批准号:
EP/J019496/1 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Phase Transitions and Scaling in Non-Equilibrium Systems
非平衡系统中的相变和缩放
- 批准号:
0075725 - 财政年份:2000
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Phase Transitions: Finite-Size Effects and Corrections to Scaling (Materials Research)
相变:有限尺寸效应和缩放校正(材料研究)
- 批准号:
8601208 - 财政年份:1986
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant