Controlling and Understanding Thermal Energy Exchange at Single Domains of Functional Materials

控制和理解功能材料单域的热能交换

基本信息

  • 批准号:
    1608899
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Heat has been familiar and important to humankind for a much longer history than electricity, yet people's ability of controlling and understanding heat lags much behind that of electricity. The key lies in materials science and engineering: how to design, synthesize and develop materials and tools that support, direct and gauge heat flow (in the same manner in which semiconductors work with electric current). This project seeks to tackle this fundamental problem using a specific class of materials: nanoscale functional materials. As heat is carried by both electrons and atomic vibration (the so-called "phonons"), achieving this goal requires exquisite control of behavior of both electrons and phonons, as well as their interactions. Functional materials made in the nanoscale and with high quality allow such control because they can be used to regulate the direction and magnitude of heat flow (as well as its conversion from/to electric current and fields). Knowledge gained in this project is used to educate underrepresented students through a partnership between Prof. Wu's university and local middle-high schools. TECHNICAL DETAILS: Functional materials support extraordinary thermal energy exchange processes such as thermoelectrics, thermal rectification, and electrocaloric effect. Domains (including functional domains and crystal grains) and domain walls of various types ubiquitously exist in these materials and strongly influence, sometimes dominate, the thermal energy exchange processes. Hampered by challenges in measuring heat flow at the nanoscale, previous studies of these effects are mostly limited to materials with a large number of disordered domains. As a result, intrinsic effects are hidden by ensemble averaging over the domains, leaving many key questions unsettled. This project goes beyond this ensemble averaging, to gauge, understand, control and optimize the thermal energy exchange at the level of single domain or single domain wall of functional materials, using microfabricated tools and nanomaterials processing techniques recently developed in Prof. Wu's lab. The project enables exquisite control of heat flow with functional materials by engineering density and mobility of electrons as well as crystallinity and interface of the lattice; identifies fundamental limits in such thermal energy exchange processes as interfacial thermal rectification, composite thermoelectrics, and electrocaloric cooling; and opens tremendous opportunities for novel design and improved performance of various thermal devices. Integrated with the research activities, Prof. Wu is also running an education project that stimulates and prepares pre-college students for careers in materials science and engineering pertaining to thermal applications.
非技术描述:热对人类来说是熟悉和重要的,比电的历史要长得多,但人们控制和理解热的能力远远落后于电。关键在于材料科学和工程:如何设计、合成和开发支持、引导和测量热流的材料和工具(与半导体与电流工作的方式相同)。这个项目试图用一种特殊的材料来解决这个基本问题:纳米级功能材料。由于热量由电子和原子振动(所谓的“声子”)携带,实现这一目标需要对电子和声子的行为以及它们之间的相互作用进行精确的控制。纳米级和高质量的功能材料允许这样的控制,因为它们可以用来调节热流的方向和大小(以及从电流和场到电流和场的转换)。在这个项目中获得的知识将通过吴教授所在的大学和当地中学的合作来教育弱势学生。技术细节:功能材料支持非凡的热能交换过程,如热电、热整流和电热效应。各种类型的畴(包括功能畴和晶粒)和畴壁普遍存在于这些材料中,并强烈影响,有时甚至主导着热能交换过程。由于在纳米尺度上测量热流的挑战,先前对这些效应的研究大多局限于具有大量无序畴的材料。其结果是,内在效应被域上的整体平均所掩盖,留下了许多悬而未决的关键问题。该项目超越了这种整体平均,利用吴教授实验室最近开发的微加工工具和纳米材料加工技术,测量、理解、控制和优化功能材料单畴或单畴壁水平上的热能交换。该项目通过工程密度和电子迁移率以及晶格的结晶度和界面,实现功能材料热流的精细控制;识别诸如界面热整流、复合热电和电热冷却等热能交换过程的基本限制;并为各种热器件的新设计和改进性能提供了巨大的机会。与研究活动相结合,吴教授还开展了一个教育项目,旨在激励和培养大学预科学生从事与热应用相关的材料科学和工程方面的职业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junqiao Wu其他文献

Advanced MOSFET Structures and Processes for Sub-7 nm CMOS Technologies By Peng Zheng A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy
用于亚 7 nm CMOS 技术的先进 MOSFET 结构和工艺 作者:彭正 部分满足哲学博士学位要求的论文
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laura Waller;C. Spanos;Junqiao Wu;Peng Zheng;Tsu
  • 通讯作者:
    Tsu
Estimate of the cosmological bispectrum from the MAXIMA-1 cosmic microwave background map.
根据 MA​​XIMA-1 宇宙微波背景图估计宇宙学双谱。
  • DOI:
    10.1103/physrevlett.88.241302
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Mário G. Santos;A. Balbi;A. Balbi;J. Borrill;J. Borrill;P. Ferreira;S. Hanany;A. Jaffe;Aaron T. Lee;Aaron T. Lee;J. Magueijo;B. Rabii;P. Richards;G. Smoot;R. Stompor;R. Stompor;C. Winant;Junqiao Wu
  • 通讯作者:
    Junqiao Wu
Optical Properties of InN and Related Alloys
InN及相关合金的光学性质
  • DOI:
    10.1201/9781420078107-c7
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Yim;Junqiao Wu
  • 通讯作者:
    Junqiao Wu
Band anticrossing in dilute nitrides
稀氮化物中的能带反交叉
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Shan;K. Yu;W. Walukiewicz;Junqiao Wu;J. Ager;E. Haller
  • 通讯作者:
    E. Haller
Temperature Gated Thermal Rectifier
温度门控热整流器
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia Zhu;K. Hippalgaonkar;S. Shen;Kevin X Wang;Junqiao Wu;Xiaobo Yin;A. Majumdar;Xiang Zhang
  • 通讯作者:
    Xiang Zhang

Junqiao Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junqiao Wu', 18)}}的其他基金

DX Centers and their mitigation in transition metal dichalcogenides
DX 中心及其在过渡金属二硫属化物中的缓解
  • 批准号:
    2140304
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Smart regulation of thermal infrared radiation with meta-structured metal-insulator transition
通过元结构金属-绝缘体转变智能调节热红外辐射
  • 批准号:
    1953803
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
I-Corps: Thermal Infrared Sensitivity Enhancer Supported Breast Cancer Screening Method
I-Corps:热红外灵敏度增强器支持的乳腺癌筛查方法
  • 批准号:
    2024746
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Emergent Electronic Behavior of Van der Waals Heterostructures from Enforced Interlayer Coupling
强制层间耦合范德华异质结构的涌现电子行为
  • 批准号:
    1708448
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Engineering Electronic Structure of 2D Semiconductors with Non-Equilibrium Processing
非平衡处理二维半导体工程电子结构
  • 批准号:
    1306601
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Transducing Thermal and Optical Energies to Motion and Electricity with Coherent-Domain Ferroelastic Materials
利用相干域铁弹性材料将热能和光能转换为运动和电能
  • 批准号:
    1101779
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Single Functional Domain Wall Physics and Engineering with 1D Wall Waveguide
职业:单功能畴壁物理与一维壁波导工程
  • 批准号:
    1055938
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Off-Equilibrium Doping of Semiconductor Nanowires
半导体纳米线的非平衡掺杂
  • 批准号:
    1000176
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Implementation of Intermediate-Band Solar Cells using Multi-Band Semiconductors
使用多波段半导体实现中波段太阳能电池
  • 批准号:
    0932905
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
  • 批准号:
    2319044
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Prediction and understanding of thermal transport across successive interfaces
职业:预测和理解连续界面上的热传输
  • 批准号:
    2337749
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Understanding Thermal Transport Properties in Electrically Conductive Polymers
了解导电聚合物的热传输特性
  • 批准号:
    2312559
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
  • 批准号:
    2334246
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Understanding thermal transport across a condensing film by conducting experiments in microgravity
合作研究:国际空间站:通过微重力实验了解冷凝膜上的热传输
  • 批准号:
    2322929
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Fundamental Understanding of Thermal Transport at the Single Molecule Level
职业:对单分子水平热传输的基本了解
  • 批准号:
    2239004
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
  • 批准号:
    23K13818
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Understanding Spontaneous Internal Short Circuit Caused Thermal Runaway of Lithium-ion Batteries through In Situ Diagnosis
职业:通过原位诊断了解自发内部短路引起的锂离子电池热失控
  • 批准号:
    2240029
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: ISS: Understanding thermal transport across a condensing film by conducting experiments in microgravity
合作研究:国际空间站:通过微重力实验了解冷凝膜上的热传输
  • 批准号:
    2322928
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Understanding Kirkendall Pore Formation and Evolution: Correlating Compositional, Geometrical, and Thermal Influences
职业:了解柯肯德尔孔隙的形成和演化:关联成分、几何和热影响
  • 批准号:
    2143334
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了