Towards high power output electrostatic energy converters

迈向高功率输出静电能量转换器

基本信息

项目摘要

The field of wireless sensors for various applications including applications related to the Internet of Things is rapidly growing. Powering wireless devices with replaceable batteries will become unsustainable due to their finite lifespan and high maintenance costs. Thus, there is a great need for micro-scale power generators, which are inconspicuous and inexpensive while generating sufficient power to match the requirements of wireless sensors. Silicon-based electrostatic power generators employ variable capacitors to harvest mechanical vibration energy. They have significant advantages over other mechanical vibration harvesting technologies because of their compatibility with processes for fabrication of integrated circuits (IC), which minimize costs and also allow for on-chip integration with wireless sensors and control circuitry. Currently, the level of power output of state-of-the art harvesters is still an order of magnitude lower than that required by most advanced ultra-low power wireless systems. In this work, new concepts will be investigated to create silicon-based electrostatic harvesters with increased power output. As part of the project, a consistent effort will be made to attract students from underrepresented minorities in the research. The research results will also be communicated to a broad audience including high school students, through summer programs and other outreach efforts at Rensselaer Polytechnic Institute. The objective of this proposal is to investigate new methods for silicon-based electrostatic vibration energy harvesters in order to increase their power output. Such devices typically employ variable capacitors with interdigitated electrodes, where a set of electrodes moves in response to vibration. The energy converted depends on the level of capacitance variation during motion. The proposed work explores two transformative approaches to increase the capacitance variation, and consequently the power level, by investigating: i) a dual-level stopper, in conjunction with highly dense packed electrodes in gap-closing interdigitated in-plane harvesters and ii) out-of-plane interdigitated harvesters. The first approach employs two different stopping mechanisms, a nanostopper and a soft-stopper, that work together to boost the maximum capacitance and produce frequency up-conversion, increasing the number of energy conversion cycles per unit time for a gap closing in-plane harvester. The nanostopper is defined by an insulating film with nanometer thickness deposited on the electrode sidewalls, which sets the absolute minimum gap. The thin film stopper will provide a separation gap that is smaller by at least an order of magnitude, as compared to stoppers defined via lithography and etching. This in turn results in an order of magnitude increase in capacitance variation and consequently in power output. The role of the soft-stoppers is to trigger frequency up-conversion, increasing the harvesting frequency, along with increasing device bandwidth and prolonging the lifespan of the nanostopper by minimizing impact forces. The second proposed approach employs a structure not previously explored for vibration energy harvesting with silicon-based devices. This structure oscillates out-of-plane and has high conversion potential due to the ability to undergo extreme capacitance changes. To validate these approaches, theoretical models will be developed to predict performance as a function of input parameters. Design optimization will be carried out for both types of devices, followed by fabrication and testing.
用于包括与物联网相关的应用的各种应用的无线传感器的领域正在快速增长。使用可更换电池为无线设备供电将变得不可持续,因为它们的寿命有限且维护成本高。因此,非常需要微型发电机,其不显眼且便宜,同时产生足够的功率以匹配无线传感器的要求。硅基静电发电机采用可变电容器来收集机械振动能量。与其他机械振动收集技术相比,它们具有显着的优势,因为它们与集成电路(IC)制造工艺兼容,从而最大限度地降低成本,并允许与无线传感器和控制电路进行片上集成。目前,最先进的收割机的功率输出水平仍然比大多数先进的超低功率无线系统所需的功率输出水平低一个数量级。在这项工作中,将研究新的概念,以创建具有更高功率输出的硅基静电收割机。 作为该项目的一部分,将持续努力吸引代表性不足的少数民族学生参加研究。研究结果还将通过伦斯勒理工学院的暑期项目和其他外展活动传达给包括高中生在内的广大受众。本提案的目的是研究硅基静电振动能量采集器的新方法,以增加其功率输出。这种装置通常采用具有叉指电极的可变电容器,其中一组电极响应于振动而移动。转换的能量取决于运动期间电容变化的水平。所提出的工作探索了两种变革性的方法,以增加电容变化,从而提高功率水平,通过调查:i)双层制动器,结合间隙闭合交叉指型平面内收割机中的高密度填充电极,以及ii)平面外交叉指型收割机。第一种方法采用两种不同的停止机制,纳米停止器和软停止器,它们一起工作以提高最大电容并产生频率上转换,从而增加间隙闭合平面内采集器的每单位时间的能量转换周期数。纳米阻挡层由沉积在电极侧壁上的具有纳米厚度的绝缘膜限定,其设置绝对最小间隙。与经由光刻和蚀刻限定的止挡件相比,薄膜止挡件将提供小至少一个数量级的分离间隙。这又导致电容变化的数量级增加,从而导致功率输出的数量级增加。软止动器的作用是触发频率上转换,增加收获频率,沿着增加器件带宽,并通过最小化冲击力延长纳米止动器的寿命。第二种方法采用了一种以前没有探索过的结构,用于硅基设备的振动能量收集。这种结构在平面外振荡,并且由于能够经历极端电容变化而具有高转换潜力。为了验证这些方法,将开发理论模型来预测作为输入参数的函数的性能。将对这两种类型的器件进行设计优化,然后进行制造和测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Diana-Andra Borca-Tasciuc其他文献

Towards a standard approach for annual energy production of concentrator-based building-integrated photovoltaics
  • DOI:
    10.1016/j.renene.2021.12.147
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Duncan E. Smith;Michael D. Hughes;Diana-Andra Borca-Tasciuc
  • 通讯作者:
    Diana-Andra Borca-Tasciuc

Diana-Andra Borca-Tasciuc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Diana-Andra Borca-Tasciuc', 18)}}的其他基金

NUE: Introducing Nanotechnology into the Thermal and Fluids Curricula:
NUE:将纳米技术引入热学和流体课程:
  • 批准号:
    0939287
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
IRES: International Collaboration on Fabrication and Characterization of Nanocrystalline Bismuth Telluride Materials for Thermoelectric Applications
IRES:用于热电应用的纳米晶碲化铋材料的制造和表征的国际合作
  • 批准号:
    1028071
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Micro-scale power generators employing capacitive converters with switchable dielectric medium
采用具有可切换介电介质的电容式转换器的微型发电机
  • 批准号:
    0925733
  • 财政年份:
    2009
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER:Towards engineering transport properties of nanoparticles for magnetically-mediated hyperthermia applications
职业:针对磁介导热疗应用的纳米颗粒的工程传输特性
  • 批准号:
    0846433
  • 财政年份:
    2009
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SGER: Fundamentals of Kinetic to Electrical Energy Conversion via Magnetic Fluids
SGER:通过磁流体将动能转换为电能的基础知识
  • 批准号:
    0813598
  • 财政年份:
    2008
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
NER: Ultra-small nanoparticles for thermal therapies at molecular and cellular level
NER:用于分子和细胞水平热疗法的超小纳米颗粒
  • 批准号:
    0708521
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

基于切平面受限Power图的快速重新网格化方法
  • 批准号:
    62372152
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多约束Power图快速计算算法研究
  • 批准号:
    61972128
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
复合气体条件下可逆固体氧化物电池“电-气”转换特性研究
  • 批准号:
    51877173
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
网格曲面上质心Power图的快速计算及应用
  • 批准号:
    61772016
  • 批准年份:
    2017
  • 资助金额:
    46.0 万元
  • 项目类别:
    面上项目
离散最优传输问题,闵可夫斯基问题和蒙奇-安培方程中的变分原理和Power图
  • 批准号:
    11371220
  • 批准年份:
    2013
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
几何约束视角下异构群体队形光滑变换控制方法研究
  • 批准号:
    61300118
  • 批准年份:
    2013
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
云计算环境下数据中心的power capping关键问题研究
  • 批准号:
    61272460
  • 批准年份:
    2012
  • 资助金额:
    81.0 万元
  • 项目类别:
    面上项目
基于信道Time/Power度量指标的TOA测距误差模型及其应用研究
  • 批准号:
    61172049
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
离散谱聚合与谱廓受限的传输理论与技术的研究
  • 批准号:
    60972057
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
低功耗集成多级放大器的设计研究
  • 批准号:
    60976028
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
  • 批准号:
    24K17329
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Catheter-injectable system for local drug delivery after myocardial infarct
用于心肌梗死后局部给药的导管注射系统
  • 批准号:
    10722614
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
FGF21 as a mediator of RPE mitochondrial dysfunction
FGF21 作为 RPE 线粒体功能障碍的介质
  • 批准号:
    10586472
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Output Power Control of Unidirectional Isolated AC-DC Converter for High-Power and Medium-Voltage Applications
适用于高功率和中压应用的单向隔离式 AC-DC 转换器的输出功率控制
  • 批准号:
    22KJ1623
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Wireless power transfer system operated in high-efficiency and constant-output-power for coil-array transmitter
用于线圈阵列发射器的高效率、恒定输出功率的无线电力传输系统
  • 批准号:
    23K03800
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Addressing the wireless power problem: A low-power hybrid radio for neuroscience experiments
解决无线电源问题:用于神经科学实验的低功耗混合无线电
  • 批准号:
    10697023
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Scaleable High-Power Output and Low Cost Made-to-Measure Tandem Solar Modules Enabling Specialised PV Applications
可扩展的高功率输出和低成本定制串联太阳能模块支持专业光伏应用
  • 批准号:
    10101359
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    EU-Funded
Structure and Mechanism of the Kinesin-3 Motor KIF1A
Kinesin-3 电机 KIF1A 的结构和机制
  • 批准号:
    10735818
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Wearable elastography for ambulatory monitoring of tissue mechanics
用于组织力学动态监测的可穿戴弹性成像
  • 批准号:
    10726529
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
A Wireless, Multimodal Neural Probe for Simultaneous Membrane-Free Neurochemical Sampling and Neuropharmacology
用于同步无膜神经化学采样和神经药理学的无线多模态神经探针
  • 批准号:
    10521971
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了