Structure and Deformation in Low-Dimensional Topology
低维拓扑中的结构和变形
基本信息
- 批准号:1610827
- 负责人:
- 金额:$ 37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometry and topology in two and three dimensions display a particular richness of structure where many different fields of mathematics come together, including classical complex analysis, combinatorial topology, geometry, dynamical systems, and the theory of groups. When three-dimensional spaces (manifolds) are glued together along their two-dimensional boundaries, the properties of the resulting space depend in complex ways on the properties of the gluing maps. The gluing maps themselves form a rich algebraic structure known as a mapping class group; this research project explores a number of settings where this structure comes into play. A particular role is played by a special geometric property of the mapping class group known as relative hyperbolicity, which has enabled the fine geometric structure of three-dimensional manifolds to be teased out and analyzed. Some of the previous advances in this area have yielded general statements but not concrete estimates, and in a number of areas the investigator expects to be able to sharpen current understanding and compute concrete bounds. The focus, nevertheless, is to deepen conceptual understanding of the way that two-dimensional and three-dimensional manifolds fit together. The project investigates aspects of the interaction between topology of surfaces and three-manifolds, with connections to deformation spaces of geometric structures and geodesic flows in Teichmuller space. A common thread in the work is the hierarchical structure of mapping class groups and the phenomenon of relative hyperbolicity via curve complexes. In a project on fibered hyperbolic three-manifolds, the investigator will explore the "subsurface profiles" of the set of all fibrations, namely the pattern of projections to fiber subsurfaces of the stable and unstable foliations associated to the monodromy maps. The goal here is to obtain uniform (genus independent) descriptions and to relate them to the combinatorial structure of veering triangulations. In Teichmuller theory, the investigator will pursue a conjectural description of the Weil-Petersson geodesic flow on the moduli space of a surface, developing new tools with which to analyze the combinatorial patterns or itineraries of geodesic rays. The investigator will study the skinning map defined by Thurston on the Teichmuller space of the boundary of a hyperbolic three-manifold. He will work toward a better quantitative control of the diameter bounds known for such maps in the acylindrical case. In the general case he will extend previous work that established relative bounded image results, to complete the proof of a claim of Thurston on iterates of the skinning-and-gluing maps in the setting where a gluing yields an atoroidal manifold. This work will also connect to a project on establishing new uniform bi-Lipschitz models for hyperbolic three-manifolds.
二维和三维的几何学和拓扑学展示了一种特别丰富的结构,其中许多不同的数学领域走到了一起,包括经典的复分析,组合拓扑学,几何学,动力系统和群论。当三维空间(流形)沿其二维边界沿着粘合在一起时,所得空间的性质以复杂的方式依赖于粘合映射的性质。胶合映射本身形成了一个丰富的代数结构,称为映射类组;这个研究项目探讨了一些设置,这种结构发挥作用。一个特殊的作用是由一个特殊的几何性质的映射类组称为相对双曲性,这使得精细的几何结构的三维流形梳理和分析。在这一领域的一些以前的进展已经产生了一般性的声明,但没有具体的估计,并在一些领域的研究人员预计能够提高目前的理解和计算具体的界限。然而,重点是加深对二维和三维流形结合在一起的方式的概念性理解。该项目研究了曲面拓扑和三流形之间的相互作用,以及与几何结构的变形空间和Teichmuller空间中的测地线流的连接。工作中的一个共同点是映射类群的层次结构和通过曲线复合体的相对双曲现象。在一个关于纤维双曲三流形的项目中,研究人员将探索所有纤维化集合的“地下剖面”,即与单值映射相关的稳定和不稳定叶理的纤维子表面的投影模式。这里的目标是获得统一(属独立)的描述,并将它们与转向三角剖分的组合结构。在Teichmuller理论中,研究人员将对表面的模空间上的Weil-Petersson测地线流进行结构描述,开发新的工具来分析测地线射线的组合模式或行程。研究了Thurston在双曲三流形边界的Teichmuller空间上定义的蒙皮映射。他将致力于一个更好的定量控制的直径范围已知的地图在acylinertia的情况下。在一般情况下,他将延长以前的工作,建立了相对有界图像的结果,以完成证明的索赔瑟斯顿迭代的皮肤和胶合地图的设置胶合产生一个atoroidal流形。本文的工作也将与建立双曲三维流形的新的统一双Lipschitz模型的项目相联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yair Minsky其他文献
Yair Minsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yair Minsky', 18)}}的其他基金
Deformation, topology and geometry in low dimensions
低维变形、拓扑和几何
- 批准号:
2005328 - 财政年份:2020
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Properly Discontinuous Actions on Homogeneous Spaces
均匀空间上的适当不连续动作
- 批准号:
1709952 - 财政年份:2017
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Geometry on Groups and Spaces, August 7-12, 2014
群与空间的几何,2014 年 8 月 7-12 日
- 批准号:
1431070 - 财政年份:2014
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
The Sixth Ahlfors-Bers Colloquium
第六届 Ahlfors-Bers 研讨会
- 批准号:
1444972 - 财政年份:2014
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
COMPLEXITY AND RIGIDITY IN LOW DIMENSIONAL GEOMETRY
低维几何的复杂性和刚性
- 批准号:
1311844 - 财政年份:2013
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Challenges in Geometry, Analysis and Computation: High Dimensional Synthesis
几何、分析和计算方面的挑战:高维综合
- 批准号:
1207829 - 财政年份:2012
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
FRG:Collaborative Research: Deformation spaces of geometric structures
FRG:合作研究:几何结构的变形空间
- 批准号:
1065872 - 财政年份:2011
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
- 批准号:
1005973 - 财政年份:2010
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554321 - 财政年份:2006
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
相似海外基金
An assessment of low-temperature, ductile lithospheric deformation using existing broadband seismic data from around South Island, New Zealand
使用新西兰南岛周围现有的宽带地震数据评估低温、延性岩石圈变形
- 批准号:
2316757 - 财政年份:2023
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Collaborative Research: Manufacturing of Low-cost Titanium Alloys by Tuning Highly-indexed Deformation Twinning
合作研究:通过调整高指数变形孪晶制造低成本钛合金
- 批准号:
2122272 - 财政年份:2021
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Collaborative Research: Manufacturing of Low-cost Titanium Alloys by Tuning Highly-indexed Deformation Twinning
合作研究:通过调整高指数变形孪晶制造低成本钛合金
- 批准号:
2121866 - 财政年份:2021
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Deformation, topology and geometry in low dimensions
低维变形、拓扑和几何
- 批准号:
2005328 - 财政年份:2020
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Constraining Frictional and Low-Temperature Plastic Rheology of Oceanic Lithosphere by Modeling Observations of Load-Induced Deformation from the Hawaiian Islands to Japan Trench
通过模拟从夏威夷群岛到日本海沟的荷载引起的变形观测来约束海洋岩石圈的摩擦和低温塑性流变
- 批准号:
1940026 - 财政年份:2019
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Study on measurement technology to detect river bank and subsurface deformation simultaneously, accurately, and at low cost
同时、准确、低成本检测河岸及地下变形测量技术研究
- 批准号:
19K04949 - 财政年份:2019
- 资助金额:
$ 37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of design method enables to suppress residual deformation of reinforced concrete building with low cost
建立低成本抑制钢筋混凝土建筑残余变形的设计方法
- 批准号:
17K06665 - 财政年份:2017
- 资助金额:
$ 37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Seismic response control of low-rise light-weight structure by friction/viscous dampers with deformation distribution control mechanism and sliding base
具有变形分布控制机构和滑动底座的摩擦/粘滞阻尼器对低层轻质结构的地震响应控制
- 批准号:
17H03346 - 财政年份:2017
- 资助金额:
$ 37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deformation Twinning and Related Change in Mechanical Properties in Stainless Steel Processed by Low ECAP Passes
低 ECAP 道次加工不锈钢的变形孪生及相关机械性能变化
- 批准号:
15K06510 - 财政年份:2015
- 资助金额:
$ 37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation on the neutron irradiation properties and inhomogeneous deformation of dissimilar-metals weld joints between low-activation ferritic steel and stainless steel
低活化铁素体钢与不锈钢异种金属焊接接头中子辐照性能及不均匀变形研究
- 批准号:
26289358 - 财政年份:2014
- 资助金额:
$ 37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)