COMPLEXITY AND RIGIDITY IN LOW DIMENSIONAL GEOMETRY
低维几何的复杂性和刚性
基本信息
- 批准号:1311844
- 负责人:
- 金额:$ 34.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI plans to investigate aspects of the interaction of topology and geometry in 2 and 3 dimensions, focusing in particular on the relations between topological and geometric complexity. A primary feature in this investigation is a certain localization of complexity that occurs in maps of surfaces, and has deep relations to the theory of 3-manifolds and their hyperbolic structure, as well as to the geometry of the Teichmuller and moduli space of conformal structures on a surface. The structure of the complex of curves on a surface plays a role in all these settings, which the PI plans to continue investigating and refining. Particular goals include genus-independent versions of existing theorems on the complex of curves, or versions where genus dependence is explicit; quantitative control of Thurston's skinning map; and better understanding of other settings where gluing maps determine the structure of hyperbolic 3-manifolds. Particular attention will be paid to the compressible-boundary case. In Teichmuller theory, the PI will investigate the behavior of Weil-Petersson geodesic flow and its relation to combinatorial invariants arising from the complex of curves.Geometry and topology play a fundamental role in mathematics. Geometric spaces arise in many settings, either as explicit objects we visualize directly, or via abstractions such as configuration spaces of systems or parameter spaces. The topology of a space is the way it is combinatorially put together without regard to geometry, but often these topological descriptions suffice to determine the geometry uniquely. This phenomenon is called rigidity and plays a central role. In low dimensions there is a confluence of many different aspects of mathematics which interact with rigidity, including analysis, complex analysis and dynamics. Moreover, the visualizability and accessibility of the low-dimensional setting brings many subtle phenomena into focus and serves as a testing ground for new mathematical ideas. Within this setting we propose to investigate a number of quantitative aspects of rigidity, particularly ways in which complexity in the topological description translates to features of the geometry.
PI计划研究二维和三维拓扑和几何的相互作用,特别关注拓扑和几何复杂性之间的关系。在这项调查的一个主要特点是一定的本地化的复杂性,发生在地图的表面,并有深刻的关系理论的3-流形和双曲结构,以及几何的Teichmuller和模空间的共形结构的表面上。曲面上的曲线复合体的结构在所有这些设置中都起着重要作用,PI计划继续调查和改进。特别的目标包括现有定理的复杂的曲线,或版本属独立的版本,属依赖是明确的;定量控制瑟斯顿的皮肤地图;和更好地了解其他设置胶合地图确定结构的双曲3-流形。将特别注意可压缩边界的情况。在Teichmuller理论中,PI将研究Weil-Petersson测地线流的行为及其与由曲线复形产生的组合不变量的关系。几何和拓扑在数学中起着基础作用。几何空间出现在许多环境中,要么作为我们直接可视化的显式对象,要么通过抽象,如系统的配置空间或参数空间。一个空间的拓扑是它被组合在一起的方式,而不考虑几何,但通常这些拓扑描述足以唯一地确定几何。这种现象被称为刚性,并发挥着核心作用。在低维中,数学的许多不同方面与刚性相互作用,包括分析,复分析和动力学。此外,低维环境的可视化和可访问性使许多微妙的现象成为焦点,并成为新数学思想的试验场。在这种情况下,我们建议调查一些定量方面的刚性,特别是在拓扑描述的复杂性转化为几何特征的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yair Minsky其他文献
Yair Minsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yair Minsky', 18)}}的其他基金
Deformation, topology and geometry in low dimensions
低维变形、拓扑和几何
- 批准号:
2005328 - 财政年份:2020
- 资助金额:
$ 34.4万 - 项目类别:
Continuing Grant
Properly Discontinuous Actions on Homogeneous Spaces
均匀空间上的适当不连续动作
- 批准号:
1709952 - 财政年份:2017
- 资助金额:
$ 34.4万 - 项目类别:
Continuing Grant
Structure and Deformation in Low-Dimensional Topology
低维拓扑中的结构和变形
- 批准号:
1610827 - 财政年份:2016
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Geometry on Groups and Spaces, August 7-12, 2014
群与空间的几何,2014 年 8 月 7-12 日
- 批准号:
1431070 - 财政年份:2014
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
The Sixth Ahlfors-Bers Colloquium
第六届 Ahlfors-Bers 研讨会
- 批准号:
1444972 - 财政年份:2014
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Challenges in Geometry, Analysis and Computation: High Dimensional Synthesis
几何、分析和计算方面的挑战:高维综合
- 批准号:
1207829 - 财政年份:2012
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
FRG:Collaborative Research: Deformation spaces of geometric structures
FRG:合作研究:几何结构的变形空间
- 批准号:
1065872 - 财政年份:2011
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
- 批准号:
1005973 - 财政年份:2010
- 资助金额:
$ 34.4万 - 项目类别:
Continuing Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554321 - 财政年份:2006
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
相似海外基金
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
- 批准号:
2349566 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
- 批准号:
2339110 - 财政年份:2024
- 资助金额:
$ 34.4万 - 项目类别:
Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
- 批准号:
10656057 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Discovery Early Career Researcher Award
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
- 批准号:
23K12969 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
- 批准号:
2315629 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
- 批准号:
2304684 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
- 批准号:
2304697 - 财政年份:2023
- 资助金额:
$ 34.4万 - 项目类别:
Standard Grant