Deformation, topology and geometry in low dimensions

低维变形、拓扑和几何

基本信息

  • 批准号:
    2005328
  • 负责人:
  • 金额:
    $ 44.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The theory of surfaces interacts deeply with all parts of mathematics. The confluence of topology, geometry, group theory, complex analysis and dynamics in dimension two is a constant source of rich structure and influences many fields both directly and by analogy. Because surfaces are simple and flexible, they admit large parameter spaces of shapes. The study of these spaces is useful directly in topology and geometry in all dimensions. The PI will explore the geometry of the space of shapes of a surface, and the relationships between flows within this more abstract space and the ways in which three-dimensional structures are built out of families of two-dimensional structures. By way of analogy, ideas in two and three dimensions have also inspired powerful techniques in allied fields such as geometric group theory and dynamics. Part of the PI's work will explore some of these connections. Graduate students funded by the grant will, in addition to their research work, be trained in mathematics education and outreach, preparing them for contributions to society through higher education and other leadership roles. Additional activities of the PI and his students and collaborators will include public educational activities for local school children and their families, bringing cutting-edge mathematical knowledge to the greater New Haven community.The PI plans to study a number of aspects of the Weil-Petersson geometry of the Teichmuller space of a surface, and its connections to the theory of 3-manifolds and more broadly to group actions in other settings. Recent work of the PI and coauthors has shed some new light on the study of the geodesic flow of the Weil-Petersson metric on Teichmuller space, and its connection to the structure of fibered 3-manifolds. With these results in mind, the PI plans a more detailed study of the coarse structure of the Teichmuller space as made visible by the cubical and metric structure of its asymptotic cone. This point of view suggests interesting questions about minimal surfaces in the Teichmuller space, and avenues toward resolving the visibility problem for the WP geodesic flow. New connections of Weil-Petersson geometry to the structure of fibered 3-manifolds and Thurston's norm on homology hint at deeper structure which the PI plans to investigate. In the theory of 3-manifolds, the deep interaction between decompositions along surfaces, structure of curve complexes and mapping class groups, and hyperbolic geometry continues to provide challenging questions. The PI will work on developing a more complete theory for canonical decompositions of 3-manifolds, focusing on the interactions of Heegaard splittings, fibrations and subsurface projections. He will study the problem of finding uniform models for hyperbolic manifolds and obtaining a priori bounds on skinning maps. The setting of Heegaard splittings and handlebodies connects to a new approach on character varieties of free groups, via a technique of graph folding in hyperbolic space. Additional projects (some with students) include the study of hierarchically hyperbolic spaces, mapping class groups of infinite-type surfaces, and relations between hyperbolic earthquakes and the Teichmuller horocyclic flow.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
曲面理论与数学的各个部分有着深刻的相互作用。拓扑学、几何学、群论、复杂分析和动力学在二维空间的融合是丰富结构的持续源泉,并直接或间接地影响着许多领域。由于表面是简单而灵活的,它们可以容纳较大的形状参数空间。这些空间的研究在所有维度的拓扑和几何中都是直接有用的。PI将探索表面形状空间的几何形状,以及在这个更抽象的空间中流动之间的关系,以及在二维结构家族之外构建三维结构的方式。通过类比,二维和三维的思想也启发了相关领域的强大技术,如几何群论和动力学。PI的部分工作将探索其中的一些联系。获资助的研究生除从事研究工作外,还将接受数学教育和推广方面的培训,为他们通过高等教育和其他领导角色为社会做出贡献做好准备。PI和他的学生和合作者的其他活动将包括为当地学校儿童及其家庭的公共教育活动,为更大的纽黑文社区带来尖端的数学知识。PI计划研究表面的Teichmuller空间的Weil-Petersson几何的许多方面,以及它与3流形理论的联系,更广泛地说,与其他情况下的群体行为的联系。PI和合作者最近的工作为研究Teichmuller空间上Weil-Petersson度规的测地线流及其与纤维3流形结构的联系提供了一些新的思路。考虑到这些结果,PI计划对Teichmuller空间的粗糙结构进行更详细的研究,这可以通过其渐近锥的立方和度量结构来显示。这一观点提出了关于Teichmuller空间中最小曲面的有趣问题,以及解决WP测地线流可见性问题的途径。Weil-Petersson几何与纤维3流形结构的新联系以及Thurston的同调范数暗示了PI计划研究的更深层次的结构。在3流形理论中,曲面分解、曲线复合体结构和映射类群以及双曲几何之间的深度相互作用继续提供具有挑战性的问题。PI将致力于为3流形的正则分解发展一个更完整的理论,重点关注heegard分裂、纤维和地下投影的相互作用。他将研究寻找双曲流形的一致模型和获得蒙皮映射上的先验界的问题。heegard分裂和柄体的设置,通过双曲空间中的图折叠技术,连接了一种研究自由群特征变异的新方法。其他项目(一些与学生一起)包括对分层双曲空间的研究,无限型表面的映射类群,以及双曲地震与Teichmuller环流之间的关系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bottlenecks for Weil-Petersson geodesics
Weil-Petersson 测地线的瓶颈
  • DOI:
    10.1016/j.aim.2021.107628
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Minsky, Yair;Modami, Babak
  • 通讯作者:
    Modami, Babak
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yair Minsky其他文献

Yair Minsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yair Minsky', 18)}}的其他基金

Properly Discontinuous Actions on Homogeneous Spaces
均匀空间上的适当不连续动作
  • 批准号:
    1709952
  • 财政年份:
    2017
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Continuing Grant
Structure and Deformation in Low-Dimensional Topology
低维拓扑中的结构和变形
  • 批准号:
    1610827
  • 财政年份:
    2016
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Geometry on Groups and Spaces, August 7-12, 2014
群与空间的几何,2014 年 8 月 7-12 日
  • 批准号:
    1431070
  • 财政年份:
    2014
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
The Sixth Ahlfors-Bers Colloquium
第六届 Ahlfors-Bers 研讨会
  • 批准号:
    1444972
  • 财政年份:
    2014
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
COMPLEXITY AND RIGIDITY IN LOW DIMENSIONAL GEOMETRY
低维几何的复杂性和刚性
  • 批准号:
    1311844
  • 财政年份:
    2013
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Continuing Grant
Challenges in Geometry, Analysis and Computation: High Dimensional Synthesis
几何、分析和计算方面的挑战:高维综合
  • 批准号:
    1207829
  • 财政年份:
    2012
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
FRG:Collaborative Research: Deformation spaces of geometric structures
FRG:合作研究:几何结构的变形空间
  • 批准号:
    1065872
  • 财政年份:
    2011
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
  • 批准号:
    1005973
  • 财政年份:
    2010
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Continuing Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
  • 批准号:
    0554321
  • 财政年份:
    2006
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Structure of hyperbolic 3-manifolds
双曲3流形的结构
  • 批准号:
    0504019
  • 财政年份:
    2005
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Continuing Grant

相似国自然基金

Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Domain理论与拓扑学研究
  • 批准号:
    60473009
  • 批准年份:
    2004
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
  • 批准号:
    2348932
  • 财政年份:
    2024
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Computational topology and geometry for systems biology
系统生物学的计算拓扑和几何
  • 批准号:
    EP/Z531224/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Research Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
  • 批准号:
    2349810
  • 财政年份:
    2024
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
  • 批准号:
    10551576
  • 财政年份:
    2023
  • 资助金额:
    $ 44.48万
  • 项目类别:
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
  • 批准号:
    2303572
  • 财政年份:
    2023
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
Geometry and topology of surfaces and graphs
曲面和图形的几何和拓扑
  • 批准号:
    2304920
  • 财政年份:
    2023
  • 资助金额:
    $ 44.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了