Properly Discontinuous Actions on Homogeneous Spaces
均匀空间上的适当不连续动作
基本信息
- 批准号:1709952
- 负责人:
- 金额:$ 9.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main motivation for this project is the so-called Auslander's conjecture, which is a very fundamental question about groups of affine transformations that act properly and discontinuously on the affine space. These groups roughly correspond to regular affine tilings, i.e., tilings where all the tiles have the same shape up to an affine transformation. These groups also admit an interpretation in differential geometry as flat affine manifolds. The special case where these groups preserve a Euclidean metric, which in the language of tilings means that all the tiles have the same shape in an ordinary sense, has been very well-known for over a century: this is basically the subject of classical crystallography. In the general case, there is a much larger variety of these groups; and the question of their classification also leads to some fascinating questions in the theory of Lie groups and their representations.The first part of the project consists in working on a conjecture that would give, for every semisimple real Lie group G and irreducible representation V thereof, a necessary and sufficient criterion for the existence of a subgroup Gamma in the group of affine automorphisms of V with linear part in G, such that Gamma has linear part Zariski-dense in G, is free nonabelian and acts properly discontinuously on V. The second part of the project consists in translating this abstract algebraic criterion into a simple condition on the highest restricted weight of the representation, and thus completely classifying Zariski-closures of such subgroups. The last part of the proposal consists in gaining a better understanding of these groups: for instance, constructing whenever possible a fundamental domain corresponding to their proper action on the affine space; going beyond proving existence or non-existence of such groups, by looking for results that classify all such groups for a given Zariski closure; and trying to link them with free groups acting properly on other homogeneous spaces.
这个项目的主要动机是所谓的Auslander猜想,这是一个关于仿射空间上适当和不连续作用的仿射变换组的非常基本的问题。这些组大致对应于规则仿射平铺,即所有平铺具有相同形状直到仿射变换的平铺。这些群在微分几何中也被解释为平坦仿射流形。这些群保持欧几里得度规的特殊情况,在平铺语言中意味着所有瓷砖在普通意义上具有相同的形状,这已经非常著名了一个多世纪:这基本上是经典结晶学的主题。一般来说,这些群体的种类要多得多;并且它们的分类问题也引出了李群及其表示理论中的一些有趣的问题。项目的第一部分在于研究一个猜想,对于每个半单实李群G及其不可约表示V,给出在V的仿射自同构群中存在子群Gamma的一个充要条件,使得Gamma在G中具有线性部分Zariski稠密,是自由的非交换的,并且在V上适当地间断作用。项目的第二部分包括将这个抽象的代数判据转化为关于表示的最高约束权的一个简单条件,从而对这类子群的Zariski闭包进行了完全分类。提案的最后部分在于更好地理解这些群:例如,尽可能地构造一个与它们在仿射空间上的适当作用相对应的基本域;通过寻找对给定Zariski闭包的所有此类群进行分类的结果,超越证明这些群的存在或不存在的范围;并试图将它们与在其他齐次空间上适当作用的自由群联系起来。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Action of Weyl group on zero-weight space
外尔群在零权空间上的作用
- DOI:10.1016/j.crma.2018.06.005
- 发表时间:2018
- 期刊:
- 影响因子:0.8
- 作者:Le Floch, Bruno;Smilga, Ilia
- 通讯作者:Smilga, Ilia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yair Minsky其他文献
Yair Minsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yair Minsky', 18)}}的其他基金
Deformation, topology and geometry in low dimensions
低维变形、拓扑和几何
- 批准号:
2005328 - 财政年份:2020
- 资助金额:
$ 9.38万 - 项目类别:
Continuing Grant
Structure and Deformation in Low-Dimensional Topology
低维拓扑中的结构和变形
- 批准号:
1610827 - 财政年份:2016
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Geometry on Groups and Spaces, August 7-12, 2014
群与空间的几何,2014 年 8 月 7-12 日
- 批准号:
1431070 - 财政年份:2014
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
The Sixth Ahlfors-Bers Colloquium
第六届 Ahlfors-Bers 研讨会
- 批准号:
1444972 - 财政年份:2014
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
COMPLEXITY AND RIGIDITY IN LOW DIMENSIONAL GEOMETRY
低维几何的复杂性和刚性
- 批准号:
1311844 - 财政年份:2013
- 资助金额:
$ 9.38万 - 项目类别:
Continuing Grant
Challenges in Geometry, Analysis and Computation: High Dimensional Synthesis
几何、分析和计算方面的挑战:高维综合
- 批准号:
1207829 - 财政年份:2012
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
FRG:Collaborative Research: Deformation spaces of geometric structures
FRG:合作研究:几何结构的变形空间
- 批准号:
1065872 - 财政年份:2011
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
- 批准号:
1005973 - 财政年份:2010
- 资助金额:
$ 9.38万 - 项目类别:
Continuing Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554321 - 财政年份:2006
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
- 批准号:
2309591 - 财政年份:2023
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Novel 3D tailored discontinuous fibre preforms for a sustainable future in composite manufacturing
新型 3D 定制不连续纤维预制件,实现复合材料制造的可持续未来
- 批准号:
EP/W020688/1 - 财政年份:2023
- 资助金额:
$ 9.38万 - 项目类别:
Research Grant
Internal morphology-based failure criteria for high-performance discontinuous fiber composites
高性能不连续纤维复合材料基于内部形态的失效准则
- 批准号:
23K13556 - 财政年份:2023
- 资助金额:
$ 9.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
A Generative Study to Discontinuous NPs in the History of English
英语史上不连续NP的生成研究
- 批准号:
23K00494 - 财政年份:2023
- 资助金额:
$ 9.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DIscontinuous Noisy Active Meta I Composite MATERIALS
不连续噪声活性 Meta I 复合材料
- 批准号:
EP/Y027949/1 - 财政年份:2023
- 资助金额:
$ 9.38万 - 项目类别:
Fellowship
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
- 批准号:
2309590 - 财政年份:2023
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant
Development of slip-flow theory with discontinuous boundary data and its applications to self-propelled particles
不连续边界数据滑流理论的发展及其在自驱动粒子中的应用
- 批准号:
22K03924 - 财政年份:2022
- 资助金额:
$ 9.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Systems with Compact Stencils
用于具有紧凑模板的对流主导系统的龙格-库塔不连续伽辽金方法
- 批准号:
2208391 - 财政年份:2022
- 资助金额:
$ 9.38万 - 项目类别:
Standard Grant