Questions in Probability Relating to Mathematical Finance
与数学金融相关的概率问题
基本信息
- 批准号:1612758
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The award will support the PI's research on mathematical models of financial bubbles and of insider trading in the stock market. Using mathematical models one can obtain insights not normally available to mere intuitive knowledge of the markets, in rough analogy to how one can see more details and learn new things by looking at the heavens through a telescope rather than with the naked eye. The PI will treat models of credit risk, and methods currently in use by practitioners (for example banks and investment houses) to calculate the risk involved. The research plan makes the informed conjecture that when bubbles are present, the standard approximations used by financial modelers in the US and around the world are in fact significantly worse than is currently believed. The research will draw on delicate techniques in probability theory which have to do with the availability and flow of information under uncertainty; as a consequence, new mathematical results will be established which deepen our understanding of probability. The broader impact which will apply to finance will potentially result in tools available to bankers, investors, and regulators to understand and therefore increase national and global financial stability. The classical way of looking at mathematical models of financial risk uses reduced-form models and attempts to approximate the hazard rate, which gives the likelihood of imminent default at a given time. The PI intends to investigate how fast numerical approximation methods converge for these reduced-form models in the presence of financial bubbles. This involves the numerical analysis of solutions of stochastic differential equations when the coefficients are neither Lipschitz-continuous, nor have linear growth in the space variable, creating technical challenges which should have significant numerical implications.
该奖项将支持PI对金融泡沫和股票市场内幕交易数学模型的研究。使用数学模型,人们可以获得对市场的直觉知识通常无法获得的洞察力,这大致类似于人们如何通过望远镜而不是肉眼观察天空来看到更多细节并学习新事物。PI将处理信用风险模型,以及从业人员(例如银行和投资公司)目前使用的方法来计算所涉及的风险。该研究计划提出了一个明智的推测,即当泡沫存在时,美国和世界各地的金融建模者使用的标准近似值实际上比目前认为的要糟糕得多。这项研究将利用概率论中与不确定性下信息的可用性和流动有关的微妙技术;因此,将建立新的数学结果,加深我们对概率的理解。对金融业的更广泛影响可能会使银行家、投资者和监管机构能够利用工具来了解并因此提高国家和全球金融稳定性。 研究金融风险数学模型的经典方法是使用简化形式的模型,并试图近似风险率,这给出了在给定时间即将发生违约的可能性。PI旨在研究在存在金融泡沫的情况下,这些简化形式模型的数值近似方法收敛速度有多快。这涉及到随机微分方程的解的数值分析时,系数既不是Lipschitz连续的,也没有线性增长的空间变量,创造技术挑战,应该有显着的数值影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Protter其他文献
Skorohod integral of a product of two stochastic processes
- DOI:
10.1007/bf02214263 - 发表时间:
1996-10-01 - 期刊:
- 影响因子:0.600
- 作者:
David Nualart;Philip Protter - 通讯作者:
Philip Protter
A remark on the weak convergence of processes in the Skorohod topology
- DOI:
10.1007/bf01066712 - 发表时间:
1993-07-01 - 期刊:
- 影响因子:0.600
- 作者:
Jean Jacod;Philip Protter - 通讯作者:
Philip Protter
Liquidity risk and arbitrage pricing theory
- DOI:
10.1007/s00780-004-0123-x - 发表时间:
2004-08-01 - 期刊:
- 影响因子:1.400
- 作者:
Umut Çetin;Robert A. Jarrow;Philip Protter - 通讯作者:
Philip Protter
Signing trades and an evaluation of the Lee–Ready algorithm
- DOI:
10.1007/s10436-011-0184-8 - 发表时间:
2011-07-26 - 期刊:
- 影响因子:0.700
- 作者:
Marcel Blais;Philip Protter - 通讯作者:
Philip Protter
Computing the probability of a financial market failure: a new measure of systemic risk
- DOI:
10.1007/s10479-022-05146-9 - 发表时间:
2022-12-22 - 期刊:
- 影响因子:4.500
- 作者:
Robert Jarrow;Philip Protter;Alejandra Quintos - 通讯作者:
Alejandra Quintos
Philip Protter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Protter', 18)}}的其他基金
Modeling Financial Catastrophe and COVID-19 Super Spreader Events
金融灾难和 COVID-19 超级传播者事件建模
- 批准号:
2106433 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Incomplete Markets and Financial Bubbles in Mathematical Finance
数学金融中的不完全市场和金融泡沫
- 批准号:
1714984 - 财政年份:2017
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Questions in Stochastic Process Theory Arising from Mathematical Finance
金融数学引发的随机过程理论问题
- 批准号:
1308483 - 财政年份:2013
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
- 批准号:
1138756 - 财政年份:2011
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
- 批准号:
0906995 - 财政年份:2009
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Probability and Finance: Flows of Conditional Prices, Liquidity Issues, and Impulse Control AMC-SS
概率与金融:条件价格流、流动性问题和脉冲控制 AMC-SS
- 批准号:
0604020 - 财政年份:2006
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Second Cornell Conference on Mathematical Finance
第二届康奈尔数学金融会议
- 批准号:
0505420 - 财政年份:2005
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Theoretical and Applied Probability on Stochastic Calculus, Numerical Methods, and Mathematical Finance
随机微积分、数值方法和数学金融的理论和应用概率
- 批准号:
0202958 - 财政年份:2002
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
- 批准号:
9971720 - 财政年份:1999
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Northeast Probability Seminar 2023-2025
会议:东北概率研讨会2023-2025
- 批准号:
2331449 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Conference: Cincinnati Symposium on Probability 2024
会议:2024 年辛辛那提概率研讨会
- 批准号:
2413604 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Conference: Midwest Probability Colloquium 2023-2025
会议:2023-2025 年中西部概率研讨会
- 批准号:
2335784 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
The research on the stability of the density functions for the existence probability of orbits
轨道存在概率密度函数的稳定性研究
- 批准号:
23K03185 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimation of probability and maximum potential intensity of extreme coastal hazards using global and regional integrated models
使用全球和区域综合模型估计极端沿海灾害的概率和最大潜在强度
- 批准号:
23H00196 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Northeast Probability Seminar 2022
会议:2022年东北概率研讨会
- 批准号:
2243505 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
- 批准号:
2317172 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant














{{item.name}}会员




