Theoretical and Applied Probability on Stochastic Calculus, Numerical Methods, and Mathematical Finance
随机微积分、数值方法和数学金融的理论和应用概率
基本信息
- 批准号:0202958
- 负责人:
- 金额:$ 37.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-15 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0202958Protter The principal investigator and co-principal investigator will investigate several topics in probability within the subfields of stochastic calculus and Monte Carlo simulation. The problems selected are motivated primarily by applications in mathematical finance, but the results will be of more general theoretical significance. In stochastic calculus, new results about stopping times will lead to better models of credit risk and a deeper understanding of what makes possible successful hedging of financial risks. New progress in stochastic calculus will help extend theories of incomplete markets, i.e. markets containing risks that can not be perfectly hedged, as is true in practice. One Monte Carlo issue to be addressed is the optimal use of an algorithm that has recently become popular in option pricing. Another line of research will involve improving numerical techniques for solutions of stochastic differential equations in connection with simulation. A third Monte Carlo topic is the optimal application of some variance reduction techniques that are well suited to problems in nuclear physics, estimation of rare events probabilities, and some option pricing problems. The recent development of a new model for stock prices that incorporates sizes of trade will lead to new pricing technology for financial derivatives. The application of probability to finance has revolutionized an industry. In the past 20 years the creation of multi-trillion dollar derivative security markets has facilitated the world-wide flow of capital and thereby enhanced international commerce and productivity. Without the mathematical models which provide reliable pricing of derivative securities (e.g., stock options) and guide the management of their associated risk, these markets could not exist. The underlying theme of the mathematical success has been to compute precisely the price of financial derivatives which enable companies to lay off risk by buying financial instruments that protect them from unlikely but possibly disastrous events. Equally if not more important has been the description of a recipe for the seller of the instrument to follow in order to protect himself from the risk he accepts through the sale. A complete market is one in which the theory explains how to do this in principle, and in such a market the theory often provides an explicit guide to implementation of this recipe. In other words, in complete markets a new type of insurance has been created, and this has been made possible by existing probability theory. This type of "risk insurance" generated the revolution mentioned above. A real problem, however, is that in reality markets are not complete, and thus new mathematical techniques are needed to extend the theory and to make it more truly applicable. This has already begun, but it is in its infancy, and this extension of the theory will be a large focus of the proposed project. In addition, recently new models have been proposed to better incorporate liquidity issues and market frictions (such as transaction costs when implementing stock trades), in part by the PI himself. These models will continue to be developed, calibrated, and statistically verified.
[20202958] proteter首席研究员和联合首席研究员将在随机微积分和蒙特卡罗模拟的子领域内研究概率中的几个主题。所选问题的动机主要是数学金融的应用,但结果将具有更普遍的理论意义。在随机微积分中,关于停止时间的新结果将带来更好的信用风险模型,并更深入地了解是什么使成功对冲金融风险成为可能。随机微积分的新进展将有助于扩展不完全市场理论,即包含无法完全对冲的风险的市场,这在实践中是正确的。要解决的蒙特卡罗问题之一是最近在期权定价中流行的一种算法的最佳使用。另一项研究将涉及改进与模拟有关的随机微分方程解的数值技术。第三个蒙特卡罗主题是一些方差缩减技术的最佳应用,这些技术非常适合于核物理问题、罕见事件概率估计和一些期权定价问题。最近开发的一种包含交易规模的股票价格新模型将为金融衍生品带来新的定价技术。概率论在金融领域的应用彻底改变了一个行业。在过去的20年里,数万亿美元的衍生证券市场的建立促进了全球资本的流动,从而促进了国际贸易和生产力。如果没有数学模型为衍生证券(如股票期权)提供可靠的定价并指导相关风险的管理,这些市场就不可能存在。数学成功的基本主题是精确计算金融衍生品的价格,这些衍生品使公司能够通过购买金融工具来降低风险,这些金融工具可以保护它们免受不太可能发生但可能灾难性事件的影响。同样重要的是,如果不是更重要的话,对票据卖方的处方的描述是为了保护自己免受他通过销售接受的风险。在一个完整的市场中,该理论在原则上解释了如何做到这一点,在这样的市场中,该理论通常为该配方的实施提供了明确的指导。换句话说,在完全市场中,一种新型的保险被创造出来,这是由现有的概率论实现的。这种类型的“风险保险”产生了上面提到的革命。然而,一个真正的问题是,在现实中,市场是不完整的,因此需要新的数学技术来扩展理论,使其更真正适用。这已经开始了,但它还处于起步阶段,这一理论的扩展将是拟议项目的一大重点。此外,最近有人提出了新的模型,以更好地纳入流动性问题和市场摩擦(如实施股票交易时的交易成本),部分是由PI本人提出的。这些模型将继续得到开发、校准和统计验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Protter其他文献
Skorohod integral of a product of two stochastic processes
- DOI:
10.1007/bf02214263 - 发表时间:
1996-10-01 - 期刊:
- 影响因子:0.600
- 作者:
David Nualart;Philip Protter - 通讯作者:
Philip Protter
A remark on the weak convergence of processes in the Skorohod topology
- DOI:
10.1007/bf01066712 - 发表时间:
1993-07-01 - 期刊:
- 影响因子:0.600
- 作者:
Jean Jacod;Philip Protter - 通讯作者:
Philip Protter
Liquidity risk and arbitrage pricing theory
- DOI:
10.1007/s00780-004-0123-x - 发表时间:
2004-08-01 - 期刊:
- 影响因子:1.400
- 作者:
Umut Çetin;Robert A. Jarrow;Philip Protter - 通讯作者:
Philip Protter
Signing trades and an evaluation of the Lee–Ready algorithm
- DOI:
10.1007/s10436-011-0184-8 - 发表时间:
2011-07-26 - 期刊:
- 影响因子:0.700
- 作者:
Marcel Blais;Philip Protter - 通讯作者:
Philip Protter
Computing the probability of a financial market failure: a new measure of systemic risk
- DOI:
10.1007/s10479-022-05146-9 - 发表时间:
2022-12-22 - 期刊:
- 影响因子:4.500
- 作者:
Robert Jarrow;Philip Protter;Alejandra Quintos - 通讯作者:
Alejandra Quintos
Philip Protter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Protter', 18)}}的其他基金
Modeling Financial Catastrophe and COVID-19 Super Spreader Events
金融灾难和 COVID-19 超级传播者事件建模
- 批准号:
2106433 - 财政年份:2021
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Incomplete Markets and Financial Bubbles in Mathematical Finance
数学金融中的不完全市场和金融泡沫
- 批准号:
1714984 - 财政年份:2017
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Questions in Probability Relating to Mathematical Finance
与数学金融相关的概率问题
- 批准号:
1612758 - 财政年份:2016
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Questions in Stochastic Process Theory Arising from Mathematical Finance
金融数学引发的随机过程理论问题
- 批准号:
1308483 - 财政年份:2013
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
- 批准号:
1138756 - 财政年份:2011
- 资助金额:
$ 37.02万 - 项目类别:
Continuing Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
- 批准号:
0906995 - 财政年份:2009
- 资助金额:
$ 37.02万 - 项目类别:
Continuing Grant
Probability and Finance: Flows of Conditional Prices, Liquidity Issues, and Impulse Control AMC-SS
概率与金融:条件价格流、流动性问题和脉冲控制 AMC-SS
- 批准号:
0604020 - 财政年份:2006
- 资助金额:
$ 37.02万 - 项目类别:
Continuing Grant
Second Cornell Conference on Mathematical Finance
第二届康奈尔数学金融会议
- 批准号:
0505420 - 财政年份:2005
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Future Directions in Probability Theory
概率论的未来方向
- 批准号:
0226746 - 财政年份:2002
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
- 批准号:
9971720 - 财政年份:1999
- 资助金额:
$ 37.02万 - 项目类别:
Continuing Grant
相似国自然基金
普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
- 批准号:12226506
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
相似海外基金
2018 Stochastic Networks Conference and Summer School in Applied Probability
2018年随机网络会议暨应用概率暑期学校
- 批准号:
1822084 - 财政年份:2018
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
2017 INFORMS Applied Probability Society Conference; Evanston, Illinois; July 10-12, 2017
2017 INFORMS应用概率学会会议;
- 批准号:
1738406 - 财政年份:2017
- 资助金额:
$ 37.02万 - 项目类别:
Standard Grant
RTG: Dynamics, Probability, and Partial Differential Equations in Pure and Applied Mathematics
RTG:纯粹数学和应用数学中的动力学、概率和偏微分方程
- 批准号:
1645643 - 财政年份:2017
- 资助金额:
$ 37.02万 - 项目类别:
Continuing Grant
Applied probability models in health, risk, queues and forestry
健康、风险、排队和林业中的应用概率模型
- 批准号:
41187-2009 - 财政年份:2016
- 资助金额:
$ 37.02万 - 项目类别:
Discovery Grants Program - Individual
Applied probability models in health, risk, queues and forestry
健康、风险、排队和林业中的应用概率模型
- 批准号:
41187-2009 - 财政年份:2015
- 资助金额:
$ 37.02万 - 项目类别:
Discovery Grants Program - Individual
Applied probability models in health, risk, queues and forestry
健康、风险、排队和林业中的应用概率模型
- 批准号:
41187-2009 - 财政年份:2014
- 资助金额:
$ 37.02万 - 项目类别:
Discovery Grants Program - Individual
Proposal for EPSRC postdoctoral fellowship in applied probability by Dr. Matthew I. Roberts
Matthew I. Roberts 博士关于 EPSRC 应用概率博士后奖学金的提案
- 批准号:
EP/K007440/1 - 财政年份:2013
- 资助金额:
$ 37.02万 - 项目类别:
Fellowship
Topics in Applied Probability and Combinatorics
应用概率和组合学主题
- 批准号:
156885-2009 - 财政年份:2013
- 资助金额:
$ 37.02万 - 项目类别:
Discovery Grants Program - Individual
Applied Probability
应用概率
- 批准号:
172877-2013 - 财政年份:2013
- 资助金额:
$ 37.02万 - 项目类别:
Discovery Grants Program - Individual
Applied probability models in health, risk, queues and forestry
健康、风险、排队和林业中的应用概率模型
- 批准号:
41187-2009 - 财政年份:2013
- 资助金额:
$ 37.02万 - 项目类别:
Discovery Grants Program - Individual