Stochastic Differential Equations and Related Topics

随机微分方程及相关主题

基本信息

  • 批准号:
    9971720
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2004-01-31
  • 项目状态:
    已结题

项目摘要

The principal investigators will study various issues involving stochastic differential equations (hereafter SDEs). These include numerical approximations of expectations of both functions and functionals of solutions of SDEs, whether they be diffusions or more generally Markov processes with jumps. Models inspired by Stochastic Finance theory will receive attention; one example is forward-backward SDEs, where a general weak existence and uniqueness theorem is sought. Further a special emphasis is devoted to filtering theory where a new Monte Carlo approach is developed, and also a martingale problem approach will be tried to treat the infinite dimensional case. Stochastic partial differential equations will be studied via a new method of viscosity solutions, hopefully yielding existence, uniqueness and stability results in the fully nonlinear case. Quasi-linear backward SDEs will be studied with an eye to applications in Stochastic Finance theory; in addition several problems in Finance theory will be treated directly, including complete markets with jumps and competitive price equilibria in incomplete markets. The principal investigators of this project study stochastic differential equations. A differential equation models phenomena that vary with time, dealing with rates of change. A stochastic differential equation includes the possibility that the change comes from random forces. Examples of applications can be found in modeling radio and x-ray transmissions, and cellular telephone signals, where the randomness comes from static noise; biological examples where growth of viruses and plants have a random component; and also in banking and finance where interest rate models, commodity prices, and securities prices are modeled with random components. The stochastic differential equations are complicated and sophisticated and cannot be solved with explicit solutions: the desired quantities need to be approximated by using a high speed computer. Efficient algorithms are needed and these methods are not yet well understood; by consequence the practitioner has a choice to use models that are too simple but with methods that work, or models that better approximate the true state of nature but for which methods work poorly, if at all. We propose to remedy this situation to a large extent by developing algorithms that work for the better models, and in addition we propose to quantify to what extent the models are effective.
主要研究人员将研究涉及随机微分方程(以下简称SDEs)的各种问题。 这些包括期望的函数和泛函的解决方案的随机微分方程,无论是扩散或更一般的马尔可夫过程跳跃的数值近似。 受随机金融理论启发的模型将受到关注;一个例子是向前向后的SDES,其中寻求一般弱存在唯一性定理。 此外,特别强调的是专门用于过滤理论,其中一个新的蒙特卡洛方法的开发,也将试图处理无穷维的情况下,鞅问题的方法。 随机偏微分方程将通过一种新的粘性解的方法进行研究,希望在完全非线性的情况下得到解的存在性、唯一性和稳定性结果。 准线性后向随机微分方程将着眼于随机金融理论中的应用进行研究;此外,金融理论中的几个问题将直接处理,包括跳跃的完整市场和不完整市场中的竞争价格均衡。本项目主要研究随机微分方程。 微分方程对随时间变化的现象进行建模,处理变化率。 随机微分方程包括变化来自随机力的可能性。 应用的例子可以在建模无线电和X射线传输和蜂窝电话信号中找到,其中随机性来自静态噪声;病毒和植物的生长具有随机成分的生物学例子;以及在银行和金融中,利率模型,商品价格和证券价格都是用随机成分建模的。 随机微分方程是复杂和复杂的,不能用显式解来求解:所需的量需要通过使用高速计算机来近似。 需要有效的算法,而这些方法还没有被很好地理解;因此,从业者可以选择使用过于简单但方法有效的模型,或者更好地近似真实自然状态但方法效果不佳的模型。 我们建议在很大程度上通过开发适用于更好模型的算法来补救这种情况,此外,我们还建议量化模型的有效程度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Protter其他文献

Skorohod integral of a product of two stochastic processes
  • DOI:
    10.1007/bf02214263
  • 发表时间:
    1996-10-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    David Nualart;Philip Protter
  • 通讯作者:
    Philip Protter
A remark on the weak convergence of processes in the Skorohod topology
  • DOI:
    10.1007/bf01066712
  • 发表时间:
    1993-07-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Jean Jacod;Philip Protter
  • 通讯作者:
    Philip Protter
Liquidity risk and arbitrage pricing theory
  • DOI:
    10.1007/s00780-004-0123-x
  • 发表时间:
    2004-08-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Umut Çetin;Robert A. Jarrow;Philip Protter
  • 通讯作者:
    Philip Protter
Signing trades and an evaluation of the Lee–Ready algorithm
  • DOI:
    10.1007/s10436-011-0184-8
  • 发表时间:
    2011-07-26
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Marcel Blais;Philip Protter
  • 通讯作者:
    Philip Protter
Computing the probability of a financial market failure: a new measure of systemic risk
  • DOI:
    10.1007/s10479-022-05146-9
  • 发表时间:
    2022-12-22
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Robert Jarrow;Philip Protter;Alejandra Quintos
  • 通讯作者:
    Alejandra Quintos

Philip Protter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Protter', 18)}}的其他基金

Modeling Financial Catastrophe and COVID-19 Super Spreader Events
金融灾难和 COVID-19 超级传播者事件建模
  • 批准号:
    2106433
  • 财政年份:
    2021
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Incomplete Markets and Financial Bubbles in Mathematical Finance
数学金融中的不完全市场和金融泡沫
  • 批准号:
    1714984
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Questions in Probability Relating to Mathematical Finance
与数学金融相关的概率问题
  • 批准号:
    1612758
  • 财政年份:
    2016
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Questions in Stochastic Process Theory Arising from Mathematical Finance
金融数学引发的随机过程理论问题
  • 批准号:
    1308483
  • 财政年份:
    2013
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
  • 批准号:
    1138756
  • 财政年份:
    2011
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
  • 批准号:
    0906995
  • 财政年份:
    2009
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Probability and Finance: Flows of Conditional Prices, Liquidity Issues, and Impulse Control AMC-SS
概率与金融:条件价格流、流动性问题和脉冲控制 AMC-SS
  • 批准号:
    0604020
  • 财政年份:
    2006
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Second Cornell Conference on Mathematical Finance
第二届康奈尔数学金融会议
  • 批准号:
    0505420
  • 财政年份:
    2005
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Theoretical and Applied Probability on Stochastic Calculus, Numerical Methods, and Mathematical Finance
随机微积分、数值方法和数学金融的理论和应用概率
  • 批准号:
    0202958
  • 财政年份:
    2002
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Future Directions in Probability Theory
概率论的未来方向
  • 批准号:
    0226746
  • 财政年份:
    2002
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似海外基金

Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Studies of the Stochastic Partial Differential Equations
随机偏微分方程的研究
  • 批准号:
    2246850
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Neural networks for stochastic partial differential equations
随机偏微分方程的神经网络
  • 批准号:
    2872613
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Studentship
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
  • 批准号:
    2245242
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
McKean Vlasov Stochastic Partial Differential Equations
McKean Vlasov 随机偏微分方程
  • 批准号:
    EP/W034220/1
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Research Grant
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
  • 批准号:
    2884422
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Studentship
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Numerical methods for stochastic differential equations
随机微分方程的数值方法
  • 批准号:
    RGPIN-2018-04449
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating stochastic programming, differential equations with deep learning methods for optimizing non-medical intervention policies
将随机规划、微分方程与深度学习方法相结合,优化非医疗干预政策
  • 批准号:
    RGPIN-2022-04519
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    RGPIN-2020-06500
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了