Modeling Financial Catastrophe and COVID-19 Super Spreader Events
金融灾难和 COVID-19 超级传播者事件建模
基本信息
- 批准号:2106433
- 负责人:
- 金额:$ 28.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A major problem in financial circles, since 2008, is that two big banks ("too big to fail") actually can fail at the same time. We provide mathematical models to detect when this could happen. To do this we need to create new theory, beyond the traditional models for credit risk. It turns out that such mathematical models can easily be modified to model certain issues in the propagation of epidemics (such as the current COVID-19 pandemic). In particular, imagine that a group of people attend a super spreader event. Assuming more than a few will contract the disease, with a subset needing hospitalization, then - from the standpoint of health control and hospital capacity control - one might want to know the probability of two or more people getting the disease at once. It is important to note that two people exposed to the disease at the same event will contract the disease at different times (if at all), and the progress of the disease within their bodies will depend on a large number of factors, many of which are unknown, or impossible to quantify; hence the need for random modeling. The project will provide training opportunities and support for graduate students to be involved in the research.In Credit Risk Theory, default times are typically modeled via a Cox construction, and for two different companies a standard assumption is that the stopping times are conditionally independent, give the underlying filtration of observable events. Such models do not allow, however, for simultaneous defaults, due to the use of independent exponential random variables used in the Cox constructions. We propose to replace the independent exponentials with multivariate exponentials, using (for example) the form proposed in 1967 by Marshall and Olkin. We will then use martingale orthogonality in place of conditional independence to make the desired calculations of different properties of the default times. This extension should be especially useful when modeling catastrophic credit events, such as the simultaneous default of two banks, both of them being "too big to fail." The other class of problems we propose to study is the modeling of the development of COVID-19 (or other epidemics) on an individual level. A key example is that if two people attend a "super spreader" event, what are the times after simultaneous exposure to the development of disease? Perhaps surprisingly this can be modeled in a near perfect analogy with the credit risk issues discussed above. Such models could be useful for, for example, hospital preparedness in a given locality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自2008年以来,金融界的一个主要问题是,两家大银行(“太大而不能倒”)实际上可以同时倒闭。我们提供了数学模型来检测何时会发生这种情况。要做到这一点,我们需要创造新的理论,超越传统的信用风险模型。事实证明,这样的数学模型可以很容易地修改,以模拟流行病传播中的某些问题(例如当前的COVID-19大流行病)。特别是,想象一下一群人参加一个超级传播者活动。假设不止几个人会感染这种疾病,其中一部分人需要住院治疗,那么--从健康控制和医院容量控制的角度来看--人们可能想知道两个或两个以上的人同时感染这种疾病的概率。重要的是要注意,在同一事件中暴露于疾病的两个人将在不同的时间感染疾病(如果有的话),并且疾病在他们体内的进展将取决于大量因素,其中许多因素是未知的,或者不可能量化;因此需要随机建模。该项目将提供培训机会和支持研究生参与研究。在信用风险理论中,违约时间通常通过考克斯结构建模,对于两个不同的公司,标准假设是停止时间是条件独立的,给出了可观察事件的潜在过滤。然而,由于在考克斯构造中使用了独立的指数随机变量,这种模型不允许同时违约。我们建议用多元指数代替独立指数,使用(例如)马歇尔和奥尔金在1967年提出的形式。然后,我们将使用鞅正交性代替条件独立性来计算违约时间的不同属性。这种扩展在建模灾难性信用事件时尤其有用,例如两家银行同时违约,两家银行都“太大而不能倒闭”。“我们建议研究的另一类问题是在个人层面上对COVID-19(或其他流行病)的发展进行建模。一个关键的例子是,如果两个人参加一个“超级传播者”的活动,同时暴露后发展成疾病的时间是多少?也许令人惊讶的是,这可以与上面讨论的信用风险问题进行近乎完美的类比。这种模型可能是有用的,例如,在一个给定的location.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Protter其他文献
Skorohod integral of a product of two stochastic processes
- DOI:
10.1007/bf02214263 - 发表时间:
1996-10-01 - 期刊:
- 影响因子:0.600
- 作者:
David Nualart;Philip Protter - 通讯作者:
Philip Protter
A remark on the weak convergence of processes in the Skorohod topology
- DOI:
10.1007/bf01066712 - 发表时间:
1993-07-01 - 期刊:
- 影响因子:0.600
- 作者:
Jean Jacod;Philip Protter - 通讯作者:
Philip Protter
Liquidity risk and arbitrage pricing theory
- DOI:
10.1007/s00780-004-0123-x - 发表时间:
2004-08-01 - 期刊:
- 影响因子:1.400
- 作者:
Umut Çetin;Robert A. Jarrow;Philip Protter - 通讯作者:
Philip Protter
Signing trades and an evaluation of the Lee–Ready algorithm
- DOI:
10.1007/s10436-011-0184-8 - 发表时间:
2011-07-26 - 期刊:
- 影响因子:0.700
- 作者:
Marcel Blais;Philip Protter - 通讯作者:
Philip Protter
Computing the probability of a financial market failure: a new measure of systemic risk
- DOI:
10.1007/s10479-022-05146-9 - 发表时间:
2022-12-22 - 期刊:
- 影响因子:4.500
- 作者:
Robert Jarrow;Philip Protter;Alejandra Quintos - 通讯作者:
Alejandra Quintos
Philip Protter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Protter', 18)}}的其他基金
Incomplete Markets and Financial Bubbles in Mathematical Finance
数学金融中的不完全市场和金融泡沫
- 批准号:
1714984 - 财政年份:2017
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Questions in Probability Relating to Mathematical Finance
与数学金融相关的概率问题
- 批准号:
1612758 - 财政年份:2016
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Questions in Stochastic Process Theory Arising from Mathematical Finance
金融数学引发的随机过程理论问题
- 批准号:
1308483 - 财政年份:2013
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
- 批准号:
1138756 - 财政年份:2011
- 资助金额:
$ 28.3万 - 项目类别:
Continuing Grant
Stochastic Process Research Inspired by Problems from Mathematical Finance
受数学金融问题启发的随机过程研究
- 批准号:
0906995 - 财政年份:2009
- 资助金额:
$ 28.3万 - 项目类别:
Continuing Grant
Probability and Finance: Flows of Conditional Prices, Liquidity Issues, and Impulse Control AMC-SS
概率与金融:条件价格流、流动性问题和脉冲控制 AMC-SS
- 批准号:
0604020 - 财政年份:2006
- 资助金额:
$ 28.3万 - 项目类别:
Continuing Grant
Second Cornell Conference on Mathematical Finance
第二届康奈尔数学金融会议
- 批准号:
0505420 - 财政年份:2005
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Theoretical and Applied Probability on Stochastic Calculus, Numerical Methods, and Mathematical Finance
随机微积分、数值方法和数学金融的理论和应用概率
- 批准号:
0202958 - 财政年份:2002
- 资助金额:
$ 28.3万 - 项目类别:
Continuing Grant
Future Directions in Probability Theory
概率论的未来方向
- 批准号:
0226746 - 财政年份:2002
- 资助金额:
$ 28.3万 - 项目类别:
Standard Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
- 批准号:
9971720 - 财政年份:1999
- 资助金额:
$ 28.3万 - 项目类别:
Continuing Grant
相似国自然基金
Financial Constraints in China
and Their Policy Implications
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学 者研究基金项目
相似海外基金
CAREER: The Emerging Political Economy of FringeTech Financial Services
职业:边缘科技金融服务的新兴政治经济
- 批准号:
2337719 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Continuing Grant
Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
- 批准号:
DP240101009 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Discovery Projects
Developing systemic interventions for intimate partner financial abuse
制定针对亲密伴侣经济虐待的系统干预措施
- 批准号:
DP240101075 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Discovery Projects
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
- 批准号:
EP/Z000610/1 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Research Grant
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Feasibility Studies
Seamless integration of Financial data into ESG data
将财务数据无缝集成到 ESG 数据中
- 批准号:
10099890 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Collaborative R&D
Regulatory compliant LLMs for customer service in banking, financial services and insurance
银行、金融服务和保险客户服务领域合规法学硕士
- 批准号:
10091477 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Collaborative R&D
Should infant formula be available at UK food banks? Evaluating different pathways to ensuring parents in financial crisis can access infant formula.
英国食品银行应该提供婴儿配方奶粉吗?
- 批准号:
MR/Z503575/1 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Research Grant
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 28.3万 - 项目类别:
Collaborative R&D