Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures

合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速

基本信息

  • 批准号:
    2311544
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

The on-chip communication fabric connecting the cores, accelerators and the memory in chiplet-based architectures consumes a significant amount of power today and must be designed to not only provide adequate connectivity and performance, but also be very energy efficient and scalable, to satisfy future computing demands. Silicon photonics has the potential to alleviate some of the on-chip communication problems thanks to better performance-per-watt and higher bandwidth density. A key issue in addressing this design challenge today is the under-utilization of the expensive silicon photonics technology due to temporal and spatial fluctuation of traffic patterns. To make silicon photonics practical and viable, re-purposing the under-utilized resources for computation can speed up application execution and provide much-needed energy-efficient data transfers. The proposed research is timely and vital for the continued growth of chiplet-based heterogeneous manycore architectures. It is an organized effort that combines recent advances in technology, architecture, application, and machine learning into a promising integrated approach that will tackle one of the most critical challenges of computing systems of the future, namely the design of next-generation communication fabrics for high-performance, energy-efficient and scalable heterogeneous architectures with much-increased functionality and flexibility. All the research findings and simulation toolkits will be disseminated to the community via conference and journal publications, and a dedicated website. The research will also play a major role in education by integrating discovery with teaching and training. This research will continue to expand on outreach activities and broadening participation in computing by making the necessary efforts to attract and train underrepresented and minority students in this field. This research will design a novel, dual-purpose photonic fabric that will not only enable power-efficient and scalable on-chip communications for heterogeneous multicores but will also function as a cost-efficient and high-performance neural network accelerator for diverse applications. The crux of the idea is to: (1) provide high-bandwidth and power-efficient data transfer between cores and accelerators during high network load, and (2) off-load key accelerator functions to the same network during low network load to maximize resource utilization and speedup computation, hence the dual-purpose nature of the photonic fabric. It is expected that the combined effects of meticulously orchestrating data communication (on-chip and off-chip), sharing hardware resources between communication and computation, and implementing optical neural computations will provide an extremely power-efficient and scalable platform for next-generation heterogeneous chiplet-based architectures. This research will result in (1) novel photonic architectures that can be leveraged for computing and communication simultaneously, (2) a fundamental understanding of photonic computation for implementing accelerator functions, (3) hardware techniques for photonic architectures to dynamically adapt to application demands to maximize the power-efficiency and improve resiliency, and (4) proof-of-concept and open-source tools that will expand and enhance the research capabilities of the computer architecture community in this critical area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在基于芯片的体系结构中,连接内核、加速器和存储器的片上通信结构今天消耗了大量的功率,必须设计为不仅提供足够的连接和性能,而且非常节能和可扩展,以满足未来的计算需求。由于更高的每瓦性能和更高的带宽密度,硅光电子有可能缓解一些芯片上的通信问题。当今解决这一设计挑战的一个关键问题是,由于交通模式的时间和空间波动,昂贵的硅光电子技术没有得到充分利用。为了使硅光子学变得实用和可行,重新利用未充分利用的资源进行计算可以加快应用程序的执行速度,并提供急需的节能数据传输。所提出的研究对于基于芯片的异质多核体系结构的持续发展具有及时和重要的意义。它是一项有组织的努力,将技术、体系结构、应用程序和机器学习方面的最新进展结合到一个有前景的集成方法中,该方法将解决未来计算系统最关键的挑战之一,即为高性能、高能效和可扩展的异类体系结构设计下一代通信结构,并具有更高的功能和灵活性。所有研究成果和模拟工具包将通过会议和期刊出版物以及一个专门的网站向社区传播。这项研究还将通过将发现与教学和培训相结合,在教育中发挥重要作用。这项研究将继续扩大外联活动,通过作出必要努力吸引和培训这一领域的代表不足和少数族裔学生,扩大对计算机的参与。这项研究将设计一种新颖的、两用的光子结构,不仅能够为不同的多核实现高能效和可扩展的片上通信,而且还将作为经济高效的高性能神经网络加速器用于不同的应用。该思想的关键是:(1)在高网络负载时提供核心和加速器之间的高带宽和高功率效率的数据传输;(2)在低网络负载时将关键加速器功能卸载到同一网络,以最大化资源利用率和加速计算,从而实现光子光纤的两用性质。预计精心编排数据通信(片上和片外)、在通信和计算之间共享硬件资源以及实现光学神经计算的综合效果将为下一代基于芯片的异构体系结构提供一个极其高效和可扩展的平台。这项研究将产生(1)可同时用于计算和通信的新颖光子体系结构,(2)对实现加速器功能的光子计算的基本了解,(3)光子体系结构动态适应应用需求的硬件技术,以最大限度地提高能效和提高弹性,以及(4)概念验证和开源工具,将扩大和增强计算机体系结构社区在这一关键领域的研究能力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Avinash Karanth其他文献

Ultracompact and Low-Power Logic Circuits via Workfunction Engineering
通过功函数工程实现超紧凑和低功耗逻辑电路
Reconfigurable Gates with Sub-10nm Ambipolar SB-FinFETs for Logic Locking & Obfuscation
具有亚 10nm 双极 SB-FinFET 的可重构栅极,用于逻辑锁定
Sustainability in Network-on-Chips by Exploring Heterogeneity in Emerging Technologies
通过探索新兴技术的异构性实现片上网络的可持续性
  • DOI:
    10.1109/tsusc.2018.2861362
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Avinash Karanth;S. Kaya;A. Sikder;Daniel J. Carbaugh;S. Laha;D. DiTomaso;A. Louri;H. Xin;Junqiang Wu
  • 通讯作者:
    Junqiang Wu
Reflections of Cybersecurity Workshop for K-12 Teachers
K-12 教师网络安全研讨会的思考
SNAC: Mitigation of Snoop-Based Attacks with Multi-Tier Security in NoC Architectures
SNAC:通过 NoC 架构中的多层安全性缓解基于窥探的攻击

Avinash Karanth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Avinash Karanth', 18)}}的其他基金

Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
  • 批准号:
    2324645
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Language Abstractions for Reconfigurable Hardware Monitors on Manycore Architectures
SaTC:CORE:Small:众核架构上可重新配置硬件监视器的语言抽象
  • 批准号:
    1936794
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerator for Energy-efficient Heterogeneous Multicore Architectures
SHF:中:协作研究:用于节能异构多核架构的光子神经网络加速器
  • 批准号:
    1901192
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures for Optimized Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,可优化能源、性能和可靠性
  • 批准号:
    1703013
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Scaling On-chip Networks to 1000-core Systems using Heterogeneous Emerging Interconnect Technologies
SHF:中:协作研究:使用异构新兴互连技术将片上网络扩展到 1000 核系统
  • 批准号:
    1513606
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
  • 批准号:
    1420718
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
  • 批准号:
    1318981
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research:EAGER:Exploiting Heterogeneity in Emerging Interconnect Technologies for Building Highly Scalable and Power-Efficient Network-on-Chips for Many-core Systems
合作研究:EAGER:利用新兴互连技术的异构性为多核系统构建高度可扩展且高能效的片上网络
  • 批准号:
    1342657
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Power-Efficient Reconfigurable Wireless Network-on-Chip (NoC) Interconnects for Future Many-core Architectures
适用于未来众核架构的高能效可重配置无线片上网络 (NoC) 互连
  • 批准号:
    1129010
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Design of Reconfigurable Power and Area-Efficient Nanophotonic Architectures for Future Multi-cores
职业:为未来多核设计可重构功率和面积高效的纳米光子架构
  • 批准号:
    1054339
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了