Collaborative Proposal: Density-enhanced data assimilation for hyperbolic balance laws
合作提案:双曲平衡定律的密度增强数据同化
基本信息
- 批准号:1620278
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research addresses the urgent need to develop efficient computational tools to process the dramatically increasing amounts of observational data. Management of many complex systems (e.g., traffic) has to confront the uncertainty in both their current and future state. This uncertainty typically increases with time, leading to less accurate and useful predictions. Thus, it is important to develop practical methods for "adjusting" the probabilistic state of the system and reducing uncertainty using observational data. This approach is broadly referred to as data assimilation. We will develop novel techniques for incorporating observational data to reduce uncertainty in predictions in two particular areas of national interest: fluid dynamics (e.g., flood forecasting) and traffic management. Both are of vital importance to sustainable development of our society.We propose to develop a novel data assimilation framework for physical processes whose time-dynamics is described by hyperbolic conservation laws. This framework takes advantage of a kinetic representation of hyperbolic systems and, thus, availability of explicit deterministic equations for the time evolution of probability density function for dependent variables. These equations can often be derived and solved exactly, yielding explicit analytical solutions for the marginal and joint probability density functions. For systems of hyperbolic conservation laws an appropriate closure assumption is needed. Thus, the proposed framework relies on the kinetic representation, which takes the form of linear equations for joint probability density functions. Bayesian updating is utilized to incorporate observations into the prediction.
该研究解决了开发有效的计算工具来处理急剧增加的观测数据的迫切需要。许多复杂系统的管理(例如,交通)必须面对其当前和未来状态的不确定性。这种不确定性通常会随着时间的推移而增加,导致预测的准确性和有用性降低。因此,重要的是要制定实用的方法来“调整”系统的概率状态,并利用观测数据减少不确定性。这种方法一般称为数据同化。我们将开发新的技术,将观测数据,以减少在国家利益的两个特定领域的预测不确定性:流体动力学(例如,洪水预报和交通管理。本文提出了一个新的数据同化框架,用于时间动力学由双曲守恒律描述的物理过程。这个框架利用了双曲系统的动力学表示,因此,可用性明确的确定性方程的时间演化的概率密度函数的因变量。这些方程往往可以推导和精确求解,产生显式的边缘和联合概率密度函数的解析解。对于双曲守恒律方程组,需要一个适当的封闭性假设。因此,所提出的框架依赖于动力学表示,其形式为联合概率密度函数的线性方程。贝叶斯更新被用来将观察到的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Timofeyev其他文献
Application of machine learning and convex limiting to subgrid flux modeling in the shallow-water equations
机器学习和凸极限在浅水方程亚网格通量建模中的应用
- DOI:
10.1016/j.matcom.2025.04.031 - 发表时间:
2025-12-01 - 期刊:
- 影响因子:4.400
- 作者:
Ilya Timofeyev;Alexey Schwarzmann;Dmitri Kuzmin - 通讯作者:
Dmitri Kuzmin
Modeling information flow in a computer processor with a multi-stage queuing model
- DOI:
10.1016/j.physd.2024.134446 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Mohammad Daneshvar;Richard C. Barnard;Cory Hauck;Ilya Timofeyev - 通讯作者:
Ilya Timofeyev
Asynchronous stochastic price pump
- DOI:
10.1016/j.physa.2018.10.028 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Misha Perepelitsa;Ilya Timofeyev - 通讯作者:
Ilya Timofeyev
Ilya Timofeyev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Timofeyev', 18)}}的其他基金
Collaborative Research: Mechanisms of Multicellular Self-Organization in Myxococcus Xanthus
合作研究:黄粘球菌多细胞自组织机制
- 批准号:
1903270 - 财政年份:2019
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Parametric Estimation of Stochastic Differential Equations under Indirect Observability
间接可观性下随机微分方程的参数估计
- 批准号:
1109582 - 财政年份:2011
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Multiscale Numerical Strategies for Models with Quadratic Nonlinearity
二次非线性模型的多尺度数值策略
- 批准号:
0713793 - 财政年份:2007
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Reduced Stochastic Dynamics for Spatially Extended Systems
空间扩展系统的简化随机动力学
- 批准号:
0405944 - 财政年份:2004
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
相似海外基金
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
- 批准号:
2413980 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
- 批准号:
EP/Y034392/1 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Research Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
- 批准号:
2341300 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
- 批准号:
ES/Y003411/1 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Research Grant
Lite(House) - A Financially Flexible, Adaptive and Efficient Live/Work Housing Proposal
Lite(House) - 财务灵活、适应性强且高效的生活/工作住房提案
- 批准号:
10071140 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Collaborative R&D
Proposal of effective utilization of polyphenols as functional food ingredients for realization of a healthy longevity society
有效利用多酚作为功能性食品成分以实现健康长寿社会的提案
- 批准号:
23K10889 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




