Parametric Estimation of Stochastic Differential Equations under Indirect Observability
间接可观性下随机微分方程的参数估计
基本信息
- 批准号:1109582
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We will develop mathematical formalism for estimating fluctuations in parameters in stochastic parametrizations due to changes in the large-scale forcing (forcing applied to the large-scale structures). The forcing will be chosen to mimic the global warming scenario. Therefore, the proposed research will elucidate the validity of stochastic parametrizations estimated from the present-day climate for other climatological conditions. We propose a novel technique for estimating parameters in stochastic parametrizations of small-scale processes from the data of the large (resolved) scales alone. In the course of the proposed research we will develop rigorous mathematical foundation for accurate estimation of parameters from the time-series of large scale.Stochastic models (also known as stochastic parametrizations) play an important role in Global Circulation Models of the atmosphere and ocean. In particular, stochastic models represent small-scale physical processes which cannot be sufficiently accurately resolved by modern numerical methods. Typically, parameters in these stochastic models are estimated from the present-day climate. The key question is how stochastic parametrizations will change in response to global climate change. In particular, estimation of stochastic models from time-series of large-scale structures can fail if the time-step of observation is too small. This is due to the fundamental differences between the trajectories of stochastic models and observed data. We will develop mathematical techniques to overcome this problem.
我们将发展数学形式来估计随机参数化中由于大尺度强迫(应用于大尺度结构的强迫)的变化而引起的参数波动。强迫将被选择来模拟全球变暖的情景。因此,这项拟议的研究将阐明根据当前气候估计的随机参数在其他气候条件下的有效性。我们提出了一种新的技术,用于估计小尺度过程的随机参数,仅从大尺度(可分辨的)数据。在研究过程中,我们将为从大规模时间序列中准确估计参数建立严格的数学基础。随机模型(也称为随机参数化)在全球大气和海洋环流模型中扮演着重要的角色。特别是,随机模型代表的是小规模的物理过程,现代数值方法不能足够准确地解决这些过程。通常,这些随机模型中的参数是根据当前气候进行估计的。关键问题是随机参数化将如何改变以应对全球气候变化。特别是,如果观测的时间步长太小,从大型结构的时间序列估计随机模型可能会失败。这是由于随机模型的轨迹和观测数据之间的根本差异。我们将开发数学技术来克服这个问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Timofeyev其他文献
Application of machine learning and convex limiting to subgrid flux modeling in the shallow-water equations
机器学习和凸极限在浅水方程亚网格通量建模中的应用
- DOI:
10.1016/j.matcom.2025.04.031 - 发表时间:
2025-12-01 - 期刊:
- 影响因子:4.400
- 作者:
Ilya Timofeyev;Alexey Schwarzmann;Dmitri Kuzmin - 通讯作者:
Dmitri Kuzmin
Modeling information flow in a computer processor with a multi-stage queuing model
- DOI:
10.1016/j.physd.2024.134446 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Mohammad Daneshvar;Richard C. Barnard;Cory Hauck;Ilya Timofeyev - 通讯作者:
Ilya Timofeyev
Asynchronous stochastic price pump
- DOI:
10.1016/j.physa.2018.10.028 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Misha Perepelitsa;Ilya Timofeyev - 通讯作者:
Ilya Timofeyev
Ilya Timofeyev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Timofeyev', 18)}}的其他基金
Collaborative Research: Mechanisms of Multicellular Self-Organization in Myxococcus Xanthus
合作研究:黄粘球菌多细胞自组织机制
- 批准号:
1903270 - 财政年份:2019
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Collaborative Proposal: Density-enhanced data assimilation for hyperbolic balance laws
合作提案:双曲平衡定律的密度增强数据同化
- 批准号:
1620278 - 财政年份:2016
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Multiscale Numerical Strategies for Models with Quadratic Nonlinearity
二次非线性模型的多尺度数值策略
- 批准号:
0713793 - 财政年份:2007
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Reduced Stochastic Dynamics for Spatially Extended Systems
空间扩展系统的简化随机动力学
- 批准号:
0405944 - 财政年份:2004
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
相似海外基金
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
- 批准号:
2317583 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2022
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
Estimation and filtering of hidden semi Markov models, event based filters and stochastic control.
隐半马尔可夫模型的估计和过滤、基于事件的过滤器和随机控制。
- 批准号:
RGPIN-2015-06084 - 财政年份:2021
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2021
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
Estimation of Stochastic Processes with Online Optimisation Methods
用在线优化方法估计随机过程
- 批准号:
21K20318 - 财政年份:2021
- 资助金额:
$ 19万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Establishing parameter estimation theory of stochastic differential equations for advanced modeling of life systems
建立生命系统高级建模的随机微分方程参数估计理论
- 批准号:
20K12059 - 财政年份:2020
- 资助金额:
$ 19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2020
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2019
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
An Experimental Investigation of the Relationship between Fluctuating Wall Pressure and Organized Turbulent Motion in a Three-Dimensional Wall Jet Using Linear Stochastic Estimation
使用线性随机估计对三维壁射流中脉动壁压力与有组织的湍流运动之间的关系进行实验研究
- 批准号:
505179-2017 - 财政年份:2019
- 资助金额:
$ 19万 - 项目类别:
Postgraduate Scholarships - Doctoral
Identification and Estimation of Dynamic Stochastic General Equilibrium Models: Skewness Matters
动态随机一般均衡模型的识别和估计:偏度很重要
- 批准号:
411754673 - 财政年份:2019
- 资助金额:
$ 19万 - 项目类别:
Research Grants