Reduced Stochastic Dynamics for Spatially Extended Systems
空间扩展系统的简化随机动力学
基本信息
- 批准号:0405944
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-15 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator and his colleagues study several examples mimicking the behavior of more complex, realistic systems in atmosphere/ocean dynamics. The main focus here is on understanding the importance of various low-dimensional chaotic structures in full dynamics with many degrees of freedom and deriving low-dimensional stochastic models which correctly capture the interaction of the low-dimensional chaos with fast scales. In addition, significance of non-Gaussian small-scale processes is analyzed in the context of the Barotropic Quasi-Geostrophic Equations.An area of great importance for many problems in science and engineering involves derivation of effective equations for a small number of suitable variables capturing the essence of large systems with many unknowns. Important examples include evolution of the coupled atmosphere/ocean systems, folding of large proteins in molecular dynamics, distribution of air-pollution over a long period of time, etc. Effective equations are required first because these systems vastly overwhelm direct numerical computations. In addition, often only a few variables in the problem provide most of the needed information. In the above examples, these essential variables might be the seasonal average temperature in the US, a few angles describing the folding changes in the protein, or the primary direction for the spread of an air-pollutant from its source. The main aim of this work is to further advance the stochastic mode-reduction strategy originally developed for derivation of the effective equations in the atmosphere/ocean dynamics. Several idealized problems are examined in order to develop a systematic approach for more realistic systems and validate the applicability of the method in various settings.
研究人员和他的同事研究了几个例子,模仿大气/海洋动力学中更复杂,更现实的系统的行为。 这里的主要重点是理解各种低维混沌结构在多自由度全动力学中的重要性,并推导出正确捕获低维混沌与快尺度相互作用的低维随机模型。 此外,非高斯小尺度过程的意义分析的正压准地转方程的背景下,在科学和工程中的许多问题的一个非常重要的领域涉及到的有效方程的推导,为少数合适的变量捕捉的本质大系统的许多未知数。 重要的例子包括演变的耦合大气/海洋系统,折叠的大蛋白质分子动力学,分布的空气污染在很长一段时间内,等有效的方程是必需的,因为这些系统大大压倒直接数值计算。此外,问题中通常只有少数变量提供了大部分所需的信息。 在上面的例子中,这些基本变量可能是美国的季节平均温度,描述蛋白质折叠变化的几个角度,或者空气污染物从其源头扩散的主要方向。 这项工作的主要目的是进一步推进的随机模式减少原来开发的大气/海洋动力学的有效方程的推导策略。几个理想化的问题进行检查,以制定一个系统的方法,更现实的系统,并验证该方法在各种设置中的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Timofeyev其他文献
Application of machine learning and convex limiting to subgrid flux modeling in the shallow-water equations
机器学习和凸极限在浅水方程亚网格通量建模中的应用
- DOI:
10.1016/j.matcom.2025.04.031 - 发表时间:
2025-12-01 - 期刊:
- 影响因子:4.400
- 作者:
Ilya Timofeyev;Alexey Schwarzmann;Dmitri Kuzmin - 通讯作者:
Dmitri Kuzmin
Modeling information flow in a computer processor with a multi-stage queuing model
- DOI:
10.1016/j.physd.2024.134446 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Mohammad Daneshvar;Richard C. Barnard;Cory Hauck;Ilya Timofeyev - 通讯作者:
Ilya Timofeyev
Asynchronous stochastic price pump
- DOI:
10.1016/j.physa.2018.10.028 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Misha Perepelitsa;Ilya Timofeyev - 通讯作者:
Ilya Timofeyev
Ilya Timofeyev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Timofeyev', 18)}}的其他基金
Collaborative Research: Mechanisms of Multicellular Self-Organization in Myxococcus Xanthus
合作研究:黄粘球菌多细胞自组织机制
- 批准号:
1903270 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Collaborative Proposal: Density-enhanced data assimilation for hyperbolic balance laws
合作提案:双曲平衡定律的密度增强数据同化
- 批准号:
1620278 - 财政年份:2016
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Parametric Estimation of Stochastic Differential Equations under Indirect Observability
间接可观性下随机微分方程的参数估计
- 批准号:
1109582 - 财政年份:2011
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Multiscale Numerical Strategies for Models with Quadratic Nonlinearity
二次非线性模型的多尺度数值策略
- 批准号:
0713793 - 财政年份:2007
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
CAREER: Dynamics and harvesting of stochastic populations
职业:随机群体的动态和收获
- 批准号:
2339000 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337426 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
CAREER: Learning stochastic spatiotemporal dynamics in single-molecule genetics
职业:学习单分子遗传学中的随机时空动力学
- 批准号:
2339241 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
- 批准号:
2348164 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Stochastic Dynamics on Energy Landscapes with Applications in Physics and Biology
能源景观的随机动力学及其在物理和生物学中的应用
- 批准号:
2307297 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
CAREER: Identifying emergent dynamics in stochastic systems
职业:识别随机系统中的新兴动态
- 批准号:
2238667 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Dynamics of Stochastic Networks: Approximation, Analysis, and Control
随机网络动力学:近似、分析和控制
- 批准号:
2153866 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant