Multiscale Numerical Strategies for Models with Quadratic Nonlinearity
二次非线性模型的多尺度数值策略
基本信息
- 批准号:0713793
- 负责人:
- 金额:$ 14.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of the proposed research is to develop a novel mathematical approach to allow faster numerical integration of certain types of Partial Differential Equations. The types of Partial Differential Equations considered in this proposal are very common in many areas of physics and, in particular, play a crucial role in numerical weather and climate studies. The main idea behind the proposed approach is that in many applications the main quantities of interest are large-scale averaged quantities (e.g., mean temperature changes over the next five to ten years, mean wind velocities during the summer, mean sea-surface temperature). Therefore, in such applications it is not necessary to resolve all small-scale physics (e.g., local wind speed at any particular location) accurately. On the other hand, the time-step of numerical integration is often limited (for technical reasons) by these small-scale processes. The proposed research seeks systematic modification of the underlying partial differential equations to reduce the overall influence of small-scale processes and, thus, to allow for a bigger time-step in numerical simulations.
拟议研究的主要目标是开发一种新的数学方法,以允许某些类型的偏微分方程的更快的数值积分。 在这个建议中考虑的偏微分方程的类型是非常常见的物理学的许多领域,特别是在数值天气和气候研究中发挥着至关重要的作用。 所提出的方法背后的主要思想是,在许多应用中,感兴趣的主要量是大尺度平均量(例如,未来五至十年的平均温度变化、夏季的平均风速、平均海面温度)。 因此,在这样的应用中,没有必要解决所有小尺度物理(例如,在任何特定位置处的局部风速)准确。 另一方面,数值积分的时间步长往往受到这些小尺度过程的限制(出于技术原因)。 拟议的研究寻求系统的修改的基本偏微分方程,以减少小规模的过程的整体影响,从而允许在数值模拟中的一个更大的时间步长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Timofeyev其他文献
Application of machine learning and convex limiting to subgrid flux modeling in the shallow-water equations
机器学习和凸极限在浅水方程亚网格通量建模中的应用
- DOI:
10.1016/j.matcom.2025.04.031 - 发表时间:
2025-12-01 - 期刊:
- 影响因子:4.400
- 作者:
Ilya Timofeyev;Alexey Schwarzmann;Dmitri Kuzmin - 通讯作者:
Dmitri Kuzmin
Modeling information flow in a computer processor with a multi-stage queuing model
- DOI:
10.1016/j.physd.2024.134446 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Mohammad Daneshvar;Richard C. Barnard;Cory Hauck;Ilya Timofeyev - 通讯作者:
Ilya Timofeyev
Asynchronous stochastic price pump
- DOI:
10.1016/j.physa.2018.10.028 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Misha Perepelitsa;Ilya Timofeyev - 通讯作者:
Ilya Timofeyev
Ilya Timofeyev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Timofeyev', 18)}}的其他基金
Collaborative Research: Mechanisms of Multicellular Self-Organization in Myxococcus Xanthus
合作研究:黄粘球菌多细胞自组织机制
- 批准号:
1903270 - 财政年份:2019
- 资助金额:
$ 14.37万 - 项目类别:
Continuing Grant
Collaborative Proposal: Density-enhanced data assimilation for hyperbolic balance laws
合作提案:双曲平衡定律的密度增强数据同化
- 批准号:
1620278 - 财政年份:2016
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Parametric Estimation of Stochastic Differential Equations under Indirect Observability
间接可观性下随机微分方程的参数估计
- 批准号:
1109582 - 财政年份:2011
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
Reduced Stochastic Dynamics for Spatially Extended Systems
空间扩展系统的简化随机动力学
- 批准号:
0405944 - 财政年份:2004
- 资助金额:
$ 14.37万 - 项目类别:
Standard Grant
相似海外基金
Development of cooling strategies and advanced numerical approaches for heat transfer in nuclear fusion reactor components under extreme heat loads
开发极端热负荷下核聚变反应堆部件传热的冷却策略和先进数值方法
- 批准号:
2498033 - 财政年份:2020
- 资助金额:
$ 14.37万 - 项目类别:
Studentship
Numerical and implementation based strategies for improving performance of a flux reconstruction code
用于提高通量重建代码性能的基于数值和实现的策略
- 批准号:
2900572 - 财政年份:2018
- 资助金额:
$ 14.37万 - 项目类别:
Studentship
Research on mathematical expressions and numerical methods of optimal hedging strategies for stochastic volatility models
随机波动率模型最优对冲策略的数学表达式和数值方法研究
- 批准号:
18K03422 - 财政年份:2018
- 资助金额:
$ 14.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical modeling of local material properties and thereof derived process strategies for powder bed based additive manufacturing of bulk metallic glasses (T02#)
基于粉末床的块体金属玻璃增材制造的局部材料特性的数值模拟和派生工艺策略(T02
- 批准号:
397810530 - 财政年份:2018
- 资助金额:
$ 14.37万 - 项目类别:
Collaborative Research Centres (Transfer Project)
Optimal hedging strategies and its numerical methods under the incomplete markets
不完全市场下的最优对冲策略及其数值方法
- 批准号:
17K13764 - 财政年份:2017
- 资助金额:
$ 14.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Locally-adaptive Tabulation Strategies for Numerical Combustion Simulations
数值燃烧模拟的局部自适应制表策略
- 批准号:
515420-2017 - 财政年份:2017
- 资助金额:
$ 14.37万 - 项目类别:
University Undergraduate Student Research Awards
Research on mathematical expressions and numerical methods for optimal hedging strategies via Malliavin calculus
基于Malliavin微积分的最优对冲策略的数学表达式和数值方法研究
- 批准号:
15K04936 - 财政年份:2015
- 资助金额:
$ 14.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical and experimental investigation of new and innovative passive and active energy-saving strategies for a large multi-purpose university building
大型多功能大学建筑新型被动和主动节能策略的数值和实验研究
- 批准号:
444484-2013 - 财政年份:2015
- 资助金额:
$ 14.37万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical and experimental investigation of new and innovative passive and active energy-saving strategies for a large multi-purpose university building
大型多功能大学建筑新型被动和主动节能策略的数值和实验研究
- 批准号:
444484-2013 - 财政年份:2014
- 资助金额:
$ 14.37万 - 项目类别:
Postgraduate Scholarships - Doctoral
Novel numerical and experimental methods for efficient assessment of the structural safety and rehabilitation strategies of dams and water-structure systems
用于有效评估大坝和水结构系统的结构安全和修复策略的新颖数值和实验方法
- 批准号:
283314-2010 - 财政年份:2014
- 资助金额:
$ 14.37万 - 项目类别:
Discovery Grants Program - Individual