EFRI NewLAW: Non-Reciprocal, Parametric Amplification of Acoustic Waves for Future Generation of RF Front-Ends
EFRI NewLAW:用于下一代射频前端的声波非互易参数放大
基本信息
- 批准号:1641128
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal leverages the advancements made on electromagnetic devices developed by the semiconductor industry by exploiting new time-reversal symmetry breaking using an acoustic wave platform to develop innovative devices more compact and efficient compared to electromagnetic devices. These new acoustic devices are capable of routing waves in specified directions and/or amplifying them without generating additional noise while also being compatible with existing acoustic devices to form acoustic ?chips?. The proposed innovative research combines concepts from electrical engineering and mechanical engineering to develop new solutions for important problems facing our future industries. This hybrid research program develops an entirely new paradigm for future wireless components by emphasizing system level figures of merit and system integration concepts necessary for the next generation electromagnetic devices. This approach requires cross-disciplinary interactions between traditionally dissimilar fields of electromagnetic waves and acoustic waves yielding a hybrid team capable of significant advancements. The proposed efforts also include educational emphasis for both undergraduate and K-12 students focusing on student educational experiences promoting systems level hybrid engineering concepts. Undergraduate students will be introduced to RF engineering applications closely aligned with this program. Additional students from underrepresented urban high schools in the Los Angeles area will be incorporated into ongoing summer research programs available at UCLA that incorporate system-level engineering concepts. The potential discoveries present in this research can bring a new revolution to wireless communication and sensor technologies. This advancement represents an order of magnitude miniaturization in the RF front-end while benefiting the entire system from extremely small form factors to substantially reduced costs. These advancements facilitate a wider deployment of electromagnetic sensors and devices necessary for future autonomous vehicles and environmental protection. A sensitive, interference resilient RF front-end also meets the ultimate need of wireless communications in cluttered environments, as interference and jamming have been primary challenges in many wireless communication scenarios. By breaking time-reversal symmetry of acoustic wave propagation with parametric modulation, non-reciprocity is obtained on an acoustic wave platform. The proposed effort will yield a new class of acoustic devices based on this principle, such as acoustic amplifiers, mixers and circulators providing orders of magnitude improvement in efficiency while dramatically reducing sizes. This is achieved by leveraging (1) the slow velocity and small wavelength of acoustic waves at RF to reduce the transmission lines footprint and (2) the high quality factor of mechanical resonances and acoustic wave propagation as well as a reduction in resistive losses to increase energy efficiency and (3) innovative designs of grating structures allowing electro-acoustic coupling of the energy to unidirectional propagating waves. Combining this fundamentally new non-reciprocal concept with the well established field of Surface Acoustic Wave and Bulk Acoustic Wave filters and delay lines, a new generation of acoustic wave based integrated circuits will be developed. Furthermore, this approach provides novel signal processing functionalities such as performing time correlations and multipath equalizations directly at RF with almost no noise penalty, which are presently unavailable. These integrated circuit devices, once successfully made, will help the future wireless system to be more sensitive and have higher efficiency, yet with an extremely small form factor.
该提案利用了半导体行业开发的电磁器件的进步,通过利用声波平台开发新的时间反演对称破缺来开发与电磁器件相比更紧凑和高效的创新器件。这些新的声学设备能够在指定方向上路由波和/或放大它们而不产生额外的噪声,同时还与现有的声学设备兼容,以形成声学?薯片?拟议的创新研究结合了电气工程和机械工程的概念,为我们未来行业面临的重要问题开发新的解决方案。该混合研究计划通过强调下一代电磁设备所需的系统级品质因数和系统集成概念,为未来的无线组件开发了一个全新的范例。这种方法需要传统上不同的电磁波和声波领域之间的跨学科相互作用,从而产生一个能够取得重大进步的混合团队。拟议的努力还包括对本科生和K-12学生的教育重点,重点是促进系统级混合工程概念的学生教育经验。本科生将被介绍到RF工程应用密切配合这个程序。来自洛杉矶地区代表性不足的城市高中的其他学生将被纳入加州大学洛杉矶分校正在进行的暑期研究项目,这些项目将系统级工程概念纳入其中。这项研究中的潜在发现可能会给无线通信和传感器技术带来新的革命。这一进步代表了RF前端的数量级小型化,同时使整个系统从极小的外形尺寸到大幅降低的成本受益。 这些进步有助于更广泛地部署未来自动驾驶汽车和环境保护所需的电磁传感器和设备。灵敏、抗干扰的RF前端还能满足杂乱环境中无线通信的最终需求,因为干扰和干扰一直是许多无线通信场景中的主要挑战。通过参量调制打破声波传播的时间反演对称性,在声波平台上获得了非互易性。所提出的努力将产生基于该原理的一类新的声学设备,诸如声学放大器、混频器和循环器,其提供了效率的数量级改进,同时显著地减小了尺寸。这是通过利用(1)在RF下声波的慢速度和小波长以减少传输线覆盖区和(2)机械谐振和声波传播的高品质因数以及电阻损耗的减少以增加能量效率和(3)允许能量到单向传播波的电声耦合的光栅结构的创新设计来实现的。将这种全新的非互易概念与声表面波和体声波滤波器和延迟线的成熟领域相结合,将开发出新一代基于声波的集成电路。此外,这种方法提供了新颖的信号处理功能,例如直接在RF处执行时间相关和多径均衡,几乎没有噪声损失,这是目前不可用的。这些集成电路器件一旦成功制造,将有助于未来的无线系统更加灵敏,效率更高,但外形尺寸极小。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Underlayer effect on the soft magnetic, high frequency, and magnetostrictive properties of FeGa thin films
- DOI:10.1063/5.0011873
- 发表时间:2020-07
- 期刊:
- 影响因子:3.2
- 作者:Adrian Acosta;Kevin Fitzell;J. Schneider;Cunzheng Dong;Z. Yao;R. Sheil;Y. Wang;G. Carman;
- 通讯作者:Adrian Acosta;Kevin Fitzell;J. Schneider;Cunzheng Dong;Z. Yao;R. Sheil;Y. Wang;G. Carman;
Nonreciprocal wave propagation and parametric amplification of bulk elastic waves in nonlinear anisotropic materials
- DOI:10.1088/1367-2630/ab61d9
- 发表时间:2020-02
- 期刊:
- 影响因子:3.3
- 作者:Mahsa Zakeri;S. Keller;Y. Wang;C. Lynch
- 通讯作者:Mahsa Zakeri;S. Keller;Y. Wang;C. Lynch
Coupling of Lamb Waves and Spin Waves in Multiferroic Heterostructures
多铁异质结构中兰姆波和自旋波的耦合
- DOI:10.1109/jmems.2020.3017138
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Tiwari, Sidhant;Schneider, Joseph D.;Wintz, Sebastian;Arekapudi, Sri S.;Lenz, Kilian;Chavez, Andres;Lindner, Jurgen;Hellwig, Olav;Carman, Greg P.;Candler, Robert N.
- 通讯作者:Candler, Robert N.
Non-degenerate parametric mixing and Q-enhancement in ALN Lamb wave resonator
ALN 兰姆波谐振器中的非简并参数混合和 Q 增强
- DOI:10.1063/5.0053818
- 发表时间:2021
- 期刊:
- 影响因子:4
- 作者:Lu, Ting;Schneider, Joseph D.;Tiwari, Sidhant;Zou, Xiating;Yeung, Lap K.;Candler, Robert N.;Carman, Gregory P.;Wang, Yuanxun Ethan
- 通讯作者:Wang, Yuanxun Ethan
Frequency conversion through nonlinear mixing in acoustic waves
- DOI:10.1063/5.0018074
- 发表时间:2020-08
- 期刊:
- 影响因子:3.2
- 作者:J. Schneider;Ting Lu;Sidhant Tiwari;Xiating Zou;A. Mal;R. Candler;Y. Wang;G. Carman
- 通讯作者:J. Schneider;Ting Lu;Sidhant Tiwari;Xiating Zou;A. Mal;R. Candler;Y. Wang;G. Carman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanxun Wang其他文献
Effects of ultrasonic vibration on residual stress distribution and local mechanical properties of AA6061/Ti6Al4V dissimilar joints by resistance spot welding
- DOI:
10.1016/j.jmrt.2024.09.154 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Mohan He;Qian Wang;Yingjun He;Jinxiang Wang;Ninshu Ma;Yuanxun Wang - 通讯作者:
Yuanxun Wang
Multi-response optimization in small scale resistance spot welding of titanium alloy by principal component analysis and genetic algorithm
- DOI:
10.1007/s00170-015-7545-9 - 发表时间:
2015-07-28 - 期刊:
- 影响因子:3.100
- 作者:
Xiaodong Wan;Yuanxun Wang;Dawei Zhao - 通讯作者:
Dawei Zhao
Numerical simulation on deformation and stress variation in resistance spot welding of dual-phase steel
- DOI:
10.1007/s00170-017-0191-7 - 发表时间:
2017-04-07 - 期刊:
- 影响因子:3.100
- 作者:
Xiaodong Wan;Yuanxun Wang;Peng Zhang - 通讯作者:
Peng Zhang
A frequency-controlled beam-steering array with mixing frequency compensation for multichannel applications
适用于多通道应用的具有混合频率补偿的频率控制波束控制阵列
- DOI:
10.1109/tap.2004.825674 - 发表时间:
2004 - 期刊:
- 影响因子:5.7
- 作者:
T. Nishio;Yuanxun Wang;T. Itoh - 通讯作者:
T. Itoh
Ultrasonic assistance for fatigue properties improvement of AA6061/Ti6Al4V dissimilar joints by resistance spot welding
超声辅助电阻点焊改善 AA6061/Ti6Al4V 异种接头疲劳性能
- DOI:
10.1016/j.cirpj.2025.06.004 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:5.400
- 作者:
Mohan He;Qian Wang;Jinxiang Wang;Ninshu Ma;Yuanxun Wang - 通讯作者:
Yuanxun Wang
Yuanxun Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanxun Wang', 18)}}的其他基金
Collaborative Research: SWIFT: Cognitive-IoV with Simultaneous Sensing and Communications via Dynamic RF Front End
合作研究:SWIFT:通过动态射频前端实现同步传感和通信的认知车联网
- 批准号:
2128570 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
- 批准号:
1849079 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Workshop: Recent Advances and Future Research Directions in RF Technologies from MHz to THz; Honolulu, Hawaii, June 8th, 2017.
研讨会:从 MHz 到 THz 射频技术的最新进展和未来研究方向;
- 批准号:
1737435 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Low Noise, Tunable Non-Reciprocal RF Front-Ends Based on Time-Varying Transmission Lines (TVTL)
基于时变传输线 (TVTL) 的低噪声、可调谐非互易 RF 前端
- 批准号:
1610594 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Closely Coupled Antenna Systems for Wireless Communications
用于无线通信的紧耦合天线系统
- 批准号:
0725929 - 财政年份:2007
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
相似海外基金
EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
- 批准号:
1849079 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
- 批准号:
1741618 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
- 批准号:
1741660 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
- 批准号:
1741673 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
- 批准号:
1741666 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
- 批准号:
1741694 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
- 批准号:
1741693 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
- 批准号:
1741565 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
- 批准号:
1741677 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
- 批准号:
1741685 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant