EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
基本信息
- 批准号:1741693
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed work addresses the investigation of a group of photonic devices exhibiting nonreciprocal light-propagating properties based on atomically thin two-dimensional materials under electric bias. The realization of electrically driven nonreciprocal light propagation in a broad wavelength range will be transformative for many photonic technological areas such as optical imaging, sensing and communications. Scientifically, this program will allow optics community to deepen the fundamental understanding of electro-optical properties and light-matter interaction in two dimensional and layered materials under strong external stimuli. The proposed research may also lead to possible commercialization of inventions through the collaboration with industry partners. Moreover, the proposed program represents a cohesive effort which integrates advanced research and educational and broadening participation activities. The team members are actively involved in teaching of both undergraduate and graduate students and they will incorporate the latest research findings into their educational activities, thus providing advanced training opportunities for future workforce in photonics and semiconductor industries. Furthermore, they will leverage the research opportunities provided by this program to enhance the participation of high school students especially for those from underrepresented groups. The team will disseminate the results of this proposed research in a timely manner to a broader society through journal publications, conference presentations, or news release through the university and general media to promote the public awareness of the importance of scientific research. Nonreciprocal photonic devices that break the time-reversal symmetry can be used for critical applications such as optical isolation and circulation for modern photonic systems. Thus, non-reciprocity devices have the potential to transform a wide range of fields in photonics, such as on-chip optical information processing, communication, and imaging. The conventional approach to achieve nonreciprocity mainly relies on bulky structures to realize substantial magneto-optic Faraday rotation, and the devices usually occupy a large footprint, posing significant challenges in integrated photonic systems. In this NewLAW project, the team proposes to develop electrically driven nonreciprocal photonic devices operating in a broad wavelength range from visible to mid-infrared by exploiting the widely tunable light-matter interaction using electric bias in atomically thin two-dimensional materials. The team consists of five principal investigators with a diverse range of background including fundamental optical physics, photonic device design, two-dimensional materials synthesis, and device realization and characterizations. To realize nonreciprocity in such compact photonic devices, the team will leverage the giant tunability of refractive index in two-dimensional transitional metal dichalcogenides materials by electrical gating and the plasmon Doppler Effect in high mobility graphene in the presence of in-plane electrical current, guided by theoretical investigations and device performance predictions. The non-reciprocal photonic devices proposed in this program are fully compatible with the popular complementary metal-oxide-semiconductor (CMOS) circuits, making them highly attractive in integrated systems. The proposed research will not only significantly advance the fundamental understanding of the light-matter interaction of two-dimensional materials with the presence of external stimuli, but also address one of the most challenging issues in modern photonic science: electrically driven optical non-reciprocity at chip-scale.
提出的工作解决了一组光子器件的研究,表现出非互易光传播特性的基础上原子级薄的二维材料下的电偏压。在宽波长范围内实现电驱动的非互易光传播对于许多光子技术领域(如光学成像、传感和通信)将是变革性的。科学上,该计划将使光学界加深对强外部刺激下二维和分层材料中电光特性和光-物质相互作用的基本理解。拟议的研究还可能通过与行业伙伴的合作,使发明实现商业化。此外,拟议的方案代表了一种凝聚力,它将先进的研究和教育以及扩大参与活动结合在一起。团队成员积极参与本科生和研究生的教学,并将最新的研究成果融入他们的教育活动,从而为未来的光子学和半导体行业的劳动力提供高级培训机会。此外,他们将利用该计划提供的研究机会,提高高中生的参与,特别是那些代表性不足的群体。该团队将通过期刊出版物、会议演讲或新闻发布等方式,通过大学和普通媒体及时向更广泛的社会传播这项拟议研究的结果,以提高公众对科学研究重要性的认识。打破时间反演对称性的非互易光子器件可以用于诸如现代光子系统的光学隔离和循环等关键应用。因此,非互易性器件有可能改变光子学中的广泛领域,例如片上光学信息处理、通信和成像。实现非互易性的传统方法主要依赖于庞大的结构来实现实质性的磁光法拉第旋转,并且器件通常占用很大的基底面,这对集成光子系统提出了重大挑战。在这个NewLAW项目中,该团队提出开发在可见光到中红外的宽波长范围内工作的电驱动非互易光子器件,方法是利用原子级薄二维材料中的电偏压,利用可广泛调谐的光-物质相互作用。该团队由五名主要研究人员组成,他们具有不同的背景,包括基础光学物理,光子器件设计,二维材料合成以及器件实现和表征。为了在这种紧凑的光子器件中实现非互易性,该团队将利用二维过渡金属二硫属化物材料中折射率的巨大可调性,通过电门控和高迁移率石墨烯中的等离子体多普勒效应,在平面电流的存在下,由理论研究和器件性能预测指导。该计划中提出的非互易光子器件与流行的互补金属氧化物半导体(CMOS)电路完全兼容,使其在集成系统中具有很大的吸引力。这项研究不仅将大大推进对存在外部刺激的二维材料的光-物质相互作用的基本理解,而且还将解决现代光子科学中最具挑战性的问题之一:芯片级的电驱动光学非互易性。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical-electronic performance and mechanism investigation of dihydroindolocarbazole-based organic dyes for DSSCs
- DOI:10.1016/j.rinp.2021.103939
- 发表时间:2021-04
- 期刊:
- 影响因子:5.3
- 作者:Qian Liu;Shihan Zhao;Yanhua Zhai;Ming Xu;Miao Li;Xian-bing Zhang
- 通讯作者:Qian Liu;Shihan Zhao;Yanhua Zhai;Ming Xu;Miao Li;Xian-bing Zhang
Non-Hermitian Nonlinear Optics without Gain and Loss
- DOI:10.1364/nlo.2019.nm2b.5
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Yue Jiang;Yefeng Mei;Ying Zuo;Yanhua Zhai;J. Wen;Shengwang Du
- 通讯作者:Yue Jiang;Yefeng Mei;Ying Zuo;Yanhua Zhai;J. Wen;Shengwang Du
Strong mid-infrared photoresponse in small-twist-angle bilayer graphene
- DOI:10.1038/s41566-020-0644-7
- 发表时间:2020-06-01
- 期刊:
- 影响因子:35
- 作者:Deng, Bingchen;Ma, Chao;Xia, Fengnian
- 通讯作者:Xia, Fengnian
Spintronic Terahertz Emission in Ultrawide Bandgap Semiconductor/Ferromagnet Heterostructures
- DOI:10.1002/adom.202201535
- 发表时间:2022-10
- 期刊:
- 影响因子:9
- 作者:Andrew R. Comstock;Melike Biliroglu;Dovletgeldi Seyitliyev;Aeron McConnell;E. Vetter;P. Reddy;R. Kirs
- 通讯作者:Andrew R. Comstock;Melike Biliroglu;Dovletgeldi Seyitliyev;Aeron McConnell;E. Vetter;P. Reddy;R. Kirs
Low-loss composite photonic platform based on 2D semiconductor monolayers
- DOI:10.1038/s41566-020-0590-4
- 发表时间:2020-02-24
- 期刊:
- 影响因子:35
- 作者:Datta, Ipshita;Chae, Sang Hoon;Lipson, Michal
- 通讯作者:Lipson, Michal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenan Gundogdu其他文献
Cationic ligation guides quantum-well formation in layered hybrid perovskites
- DOI:
10.1016/j.matt.2024.09.010 - 发表时间:
2024-12-04 - 期刊:
- 影响因子:
- 作者:
Kasra Darabi;Mihirsinh Chauhan;Boyu Guo;Jiantao Wang;Dovletgeldi Seyitliyev;Fazel Bateni;Tonghui Wang;Masoud Ghasemi;Laine Taussig;Nathan Woodward;Xiang-Bin Han;Evgeny O. Danilov;Ruipeng Li;Xiaotong Li;Milad Abolhasani;Kenan Gundogdu;Aram Amassian - 通讯作者:
Aram Amassian
Unconventional solitonic high-temperature superfluorescence from perovskites
钙钛矿中非常规孤子高温超荧光
- DOI:
10.1038/s41586-025-09030-x - 发表时间:
2025-05-28 - 期刊:
- 影响因子:48.500
- 作者:
Melike Biliroglu;Mustafa Türe;Antonia Ghita;Myratgeldi Kotyrov;Xixi Qin;Dovletgeldi Seyitliyev;Natchanun Phonthiptokun;Malek Abdelsamei;Jingshan Chai;Rui Su;Uthpala Herath;Anna K. Swan;Vasily V. Temnov;Volker Blum;Franky So;Kenan Gundogdu - 通讯作者:
Kenan Gundogdu
Kenan Gundogdu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenan Gundogdu', 18)}}的其他基金
Collaborative Research: DMREF: Hybrid Materials for Superfluorescent Quantum Emitters
合作研究:DMREF:超荧光量子发射器的混合材料
- 批准号:
2323802 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: HybriD3: Discovery, Design, Dissemination of Organic-Inorganic Hybrid Semiconductor Materials for Optoelectronic Applications
DMREF:合作研究:HybriD3:用于光电应用的有机-无机混合半导体材料的发现、设计和传播
- 批准号:
1729383 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EXCITON PHASE TRANSITION IN ATOMICALLY THIN 2D SEMICONDUCTORS
原子薄二维半导体中的激子相变
- 批准号:
1709934 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
- 批准号:
1849079 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
- 批准号:
1741618 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
- 批准号:
1741660 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
- 批准号:
1741673 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
- 批准号:
1741666 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
- 批准号:
1741694 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
- 批准号:
1741565 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
- 批准号:
1741677 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
- 批准号:
1741685 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-reciprocal, topologically protected propagation using atomically thin materials for nanoscale devices
EFRI NewLAW:使用原子级薄材料用于纳米级设备的非互易、拓扑保护传播
- 批准号:
1741691 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant