EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials

EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元

基本信息

  • 批准号:
    1741660
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The mid-infrared spectrum is a technologically important spectral range used for identifying molecular fingerprints in biology and chemistry, atmospheric transparent windows for free-space communications, and thermal-related events. The proposed research consists of establishing non-trivial topological (or surface-related) phenomena in collective plasmon-polaritonic excitations. This will then create a platform for novel nanophotonic components (waveguides, splitters, and others) which can support non-reciprocal and ideally unidirectional wave-propagation in the mid-infrared frequency. So far, all designs of photonic topological insulators involve bulk ferromagnetic materials, metals and dielectrics. The characteristics of these metamaterials are predefined by design and non-tunable. Our approach is to utilize electrically tunable quantum materials and their plasmon-polaritonic modes. For example, the directionality of the non-reciprocal plasmon-polaritons mode can be electrically controlled on-the-fly. If successful, this research would deliver integrated mid-infrared nanophotonics solutions, such as optical modulators, isolators and routers, on-chip mid-infrared lasers, and on-chip sensing of chiral biomolecules. On enhancing both education and outreach, this project will implement a three-pronged broadening participation program. First, it will employ a unified plan of action for the participating PIs to incorporate quantum materials nanophotonics into current undergraduate curricula, including classes in quantum materials, photonics, spectroscopy and processing. Secondly, the research team will organize and establish a summer experience workshop for K-12 students in the local communities. Third, the team will organize summer school and additional scientific workshops on quantum materials nanophotonics. These activities will be closely coordinated with the institution and reported to NSF annually.Non-trivial Berry phase in its ground state electronic wavefunction has recently inspired its experimental observation in 2D materials, such as valley Hall transport and circular dichroism in gapped Dirac materials. However, it was predicted that the underlying Berry phase of the electronic ground state should also imbue the collective electronic excitations with a completely new non-reciprocal character known as Berry plasmons. This project will investigate two fundamental questions: 1) How are the collective modes, including plasmons-polaritons of topological materials, impacted by the non-trivial topology of their single-particle electronic states? 2) How can we harness topological plasmons for creating new optoelectronic devices? To answer these questions, we propose a joint theoretical and experimental program, with the following goals; perform proof-of-principle experiments to verify the predicted collective excitation, Berry plasmons, and demonstrate a suite of mid-infrared nanophotonics components such as energy efficient non-reciprocal optical modulators and routers, on-chip mid-infrared pump and probe lasers, and integrated platform for sensing of chiral biomolecules. The program integrates condensed matter physics, materials and electromagnetics modeling, advanced inverse photonic system design, state-of-the-art 2D materials device fabrication, advanced hyperspectral imaging with near field infrared techniques, and mid-infrared integrated photonics components. This 4 years program involves University of Minnesota, Columbia University, Stanford University and University of Pennsylvania.
中红外光谱是一个技术上重要的光谱范围,用于识别生物学和化学中的分子指纹,自由空间通信的大气透明窗口以及与热有关的事件。拟议的研究包括建立非平凡的拓扑(或表面相关的)集体等离子体激元激发的现象。这将为新型纳米光子组件(波导,分光器等)创建一个平台,可以支持中红外频率的非互易和理想的单向波传播。到目前为止,所有的光子拓扑绝缘体的设计都涉及到铁磁材料、金属和金属。这些超材料的特性是通过设计预定义的,并且是不可调的。我们的方法是利用电调谐量子材料和它们的等离子体激元极化激元模式。例如,非互易等离子体激元-极化激元模式的方向性可以在运行中被电控制。如果成功,这项研究将提供集成的中红外纳米光子解决方案,如光调制器,隔离器和路由器,片上中红外激光器和手性生物分子的片上传感。在加强教育和外联方面,该项目将实施一个三管齐下的扩大参与方案。首先,它将为参与的PI采用统一的行动计划,将量子材料纳米光子学纳入当前的本科课程,包括量子材料,光子学,光谱学和处理课程。其次,研究团队将在当地社区为K-12学生组织和建立暑期体验工作坊。第三,该团队将组织暑期学校和额外的量子材料纳米光子学科学研讨会。这些活动将与该机构密切协调,并每年向NSF报告。其基态电子波函数中的非平凡Berry相位最近激发了其在2D材料中的实验观察,如带隙狄拉克材料中的谷霍尔输运和圆二色性。然而,据预测,电子基态的基本Berry相位也应该使集体电子激发具有一种全新的非互易特性,称为Berry等离子体。该项目将研究两个基本问题:1)拓扑材料的集体模式,包括等离子体激元-极化激元,如何受到其单粒子电子态的非平凡拓扑结构的影响?2)我们如何利用拓扑等离子体来创造新的光电器件?为了回答这些问题,我们提出了一个联合的理论和实验计划,具有以下目标:进行原理验证实验,以验证预测的集体激发,Berry等离子体,并展示了一套中红外纳米光子组件,如节能非互易光调制器和路由器,片上中红外泵浦和探测激光器,以及用于感测手性生物分子的集成平台。该计划集成了凝聚态物理,材料和电磁学建模,先进的逆光子系统设计,最先进的2D材料设备制造,先进的近场红外技术高光谱成像和中红外集成光子组件。这个4年的项目涉及明尼苏达大学,哥伦比亚大学,斯坦福大学和宾夕法尼亚大学。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics
  • DOI:
    10.1038/s41566-019-0556-6
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Lukin, Daniil M.;Dory, Constantin;Vuckovic, Jelena
  • 通讯作者:
    Vuckovic, Jelena
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tony Low其他文献

Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials
通过倾斜双曲超材料实现片上单光子提取的宽带增强
  • DOI:
    10.1063/1.5141275
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Lian Shen;Xiao Lin;Mikhail Shalaginov;Tony Low;Xianmin Zhang;Baile Zhang;Hongsheng Chen
  • 通讯作者:
    Hongsheng Chen
Giant piezoelectricity in group-IV monochalcogenides with ferroelectric AA layer stacking
具有铁电 AA 层堆叠的 IV 族单硫属化物中的巨压电性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Seungjun Lee;Hyeong;Wei Jiang;Young;Tony Low
  • 通讯作者:
    Tony Low
Anomalous Temperature Dependence in Metal–Black Phosphorus Contact
金属黑磷接触中的反常温度依赖性
  • DOI:
    10.1021/acs.nanolett.7b02278
  • 发表时间:
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Xuefei Li;Roberto Grassi;Sichao Li;Tiaoyang Li;Xiong Xiong;Tony Low;Yanqing Wu
  • 通讯作者:
    Yanqing Wu
Polaritons in layered two-dimensional materials
层状二维材料中的极化激元
  • DOI:
    10.1038/nmat4792
  • 发表时间:
    2016-11-28
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Tony Low;Andrey Chaves;Joshua D. Caldwell;Anshuman Kumar;Nicholas X. Fang;Phaedon Avouris;Tony F. Heinz;Francisco Guinea;Luis Martin-Moreno;Frank Koppens
  • 通讯作者:
    Frank Koppens

Tony Low的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tony Low', 18)}}的其他基金

DMREF: Collaborative Research: Machine learning exploration of atomic heterostructures towards perfect light absorber and giant piezoelectricity
DMREF:协作研究:原子异质结构的机器学习探索完美的光吸收体和巨压电性
  • 批准号:
    1921629
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Realization of One-Dimensional Dynamic Broadband Router
一维动态宽带路由器的实现
  • 批准号:
    1809723
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
  • 批准号:
    1849079
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
  • 批准号:
    1741618
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
  • 批准号:
    1741673
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
  • 批准号:
    1741666
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
  • 批准号:
    1741694
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
  • 批准号:
    1741693
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
  • 批准号:
    1741565
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
  • 批准号:
    1741677
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
  • 批准号:
    1741685
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocal, topologically protected propagation using atomically thin materials for nanoscale devices
EFRI NewLAW:使用原子级薄材料用于纳米级设备的非互易、拓扑保护传播
  • 批准号:
    1741691
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了