EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics

EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置

基本信息

  • 批准号:
    1741694
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

No device exists today that efficiently allows light to move forward in one direction, but stops it from moving in reverse. Devices that serve as one-way lanes for light propagation can revolutionize communication system design by adding new functionalities in a compact and more energy-efficient way. Similarly, electronics can be made more energy-efficient by suppressing back scattering. New discoveries in the past decade in the physics of wave propagation in materials have given tantalizing hints as to how one may achieve one-way devices for light and electron waves. Taking these hints towards practical engineering devices, however, requires theoretical design and experimental advances in materials and device fabrication. By bringing together a diverse and multidisciplinary team with the necessary skills, this project aims to develop the fundamental science behind such advances and experimentally demonstrate one-way devices for future information systems. This NewLAW EFRI team will investigate topological, chiral, and non-reciprocal transport of photons, polaritons, plasmons, and electron waves. This will be achieved by using specially designed material systems and device structures that provide non-trivial topological properties for electrons, for photons, and for light-matter hybrids such as non-trivial manifestations of collective plasmons and trion-polaritons. By engineering the interactions between electrons and photons in non-trivial ways, new science and new engineering technologies will be explored. Instead of photons or excitons, trions that are fermions with net charge and spin will be investigated for non-reciprocal light transport in the form of trion-polaritons. Instead of plasmons, chiral plasmons will be used for non-reciprocal transport. As a demonstration of non-reciprocal light transport, a novel optical isolator will be realized that demonstrates simultaneously high linearity, high bandwidth and high dynamic range - characteristics lacking in previous embodiments. The rich physics of non-Hermitian systems will be used to realize novel topologically-enhanced non-reciprocal waveguides. Similar non-Hermitian physics effects in the context of electron waves will be explored for electronic non-reciprocity. In this case, propagation in the evanescent complex momentum domain via electron tunneling will be explored in a device platform in specially designed material heterostructure. The EFRI team will combine theoretical research, with synthesis of new materials, and fabrication of non-reciprocal devices to achieve the above goals. Because the lack of efficient non-reciprocal wave propagation devices currently limits several functionalities in communication systems, the results of this team's research are expected to uncover new physics and engineering possibilities, contributing towards the development of communication systems that significantly affect the movement of information. The realization of the proposed devices requires a unifying theme guided by theoretical design to provide mathematical and physical understanding and guidance, experimental realization of specially designed materials such as 2D crystal heterostructures and III-Nitride semiconductors, nanofabrication of the device structures that assemble these materials in specified geometries, and finally, testing and measurement of the predicted non-reciprocal wave transport. The overarching goals are to advance the understanding of fundamental principles of non-reciprocity in novel electronic and photonic media, and to exploit these principles to realize non-reciprocal devices with superior performance. The EFRI team brings together five investigators with the precise set of skills necessary to achieve these goals.
目前还没有一种设备能有效地让光朝一个方向前进,但却阻止它朝相反的方向前进。 作为光传播的单向通道的设备可以通过以紧凑和更节能的方式添加新功能来彻底改变通信系统设计。 类似地,通过抑制后向散射,可以使电子产品更加节能。 在过去的十年中,在材料中波传播的物理学方面的新发现,为人们如何实现光波和电子波的单向器件提供了诱人的线索。 然而,将这些提示应用于实际的工程设备,需要理论设计和材料和设备制造的实验进展。 通过汇集一个具有必要技能的多元化和多学科团队,该项目旨在开发这些进步背后的基础科学,并通过实验展示未来信息系统的单向设备。 这个NewLAW EFRI团队将研究光子,极化激元,等离子体激元和电子波的拓扑,手性和非互易传输。这将通过使用专门设计的材料系统和器件结构来实现,这些材料系统和器件结构为电子、光子和光-物质混合体提供了非平凡的拓扑性质,例如集体等离子体激元和trion-极化激元的非平凡表现。通过以非平凡的方式设计电子和光子之间的相互作用,将探索新科学和新工程技术。而不是光子或激子,trion是费米子与净电荷和自旋将被调查的非互易光输运的trion极化激元的形式。代替等离子体,手性等离子体将用于非互易传输。作为非互易光传输的示范,将实现一种新颖的光学隔离器,其同时展示先前实施例中缺乏的高线性度、高带宽和高动态范围特性。非厄米系统的丰富物理将被用来实现新颖的拓扑增强非互易波导。将针对电子非互惠性探索电子波背景下类似的非埃尔米特物理效应。在这种情况下,通过电子隧穿在倏逝复动量域中的传播将在专门设计的材料异质结构中的器件平台中进行探索。EFRI团队将结合联合收割机理论研究、新材料合成和非互易器件制造来实现上述目标。由于缺乏有效的非互易波传播设备,目前限制了通信系统中的几项功能,该团队的研究结果有望揭示新的物理和工程可能性,为通信系统的发展做出贡献。所提出的器件的实现需要由理论设计指导的统一主题,以提供数学和物理理解和指导,实验实现专门设计的材料,如2D晶体异质结构和III族氮化物半导体,将这些材料组装成指定几何形状的器件结构的纳米制造,最后,测试和测量预测的非互易波传输。其总体目标是促进对新型电子和光子介质中非互易性基本原理的理解,并利用这些原理实现具有上级性能的非互易器件。EFRI团队汇集了五名具有实现这些目标所需技能的研究人员。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wide Bandwidth, Nonmagnetic Linear Optical Isolators based on Frequency Conversion
基于变频的宽带宽、非磁性线性光隔离器
  • DOI:
    10.23919/cleo.2019.8750087
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tengfei Li, Kamal Abdelsalam
  • 通讯作者:
    Tengfei Li, Kamal Abdelsalam
Fighting Broken Symmetry with Doping: Toward Polar Resonant Tunneling Diodes with Symmetric Characteristics
  • DOI:
    10.1103/physrevapplied.13.034048
  • 发表时间:
    2020-03-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Encomendero, Jimy;Protasenko, Vladimir;Xing, Huili Grace
  • 通讯作者:
    Xing, Huili Grace
N-polar GaN/AlN resonant tunneling diodes
  • DOI:
    10.1063/5.0022143
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongjin Cho;J. Encomendero;Shao-Ting Ho;H. Xing;D. Jena
  • 通讯作者:
    Yongjin Cho;J. Encomendero;Shao-Ting Ho;H. Xing;D. Jena
Non-reciprocal propagation versus non-reciprocal control
非互易传播与非互易控制
  • DOI:
    10.1038/s41566-020-00723-5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Khurgin, Jacob B.
  • 通讯作者:
    Khurgin, Jacob B.
Many-body theory of the optical conductivity of excitons and trions in two-dimensional materials
二维材料中激子和三重子光导的多体理论
  • DOI:
    10.1103/physrevb.102.085304
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Rana, Farhan;Koksal, Okan;Manolatou, Christina
  • 通讯作者:
    Manolatou, Christina
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debdeep Jena其他文献

Two-dimensional semiconductors for transistors
用于晶体管的二维半导体
  • DOI:
    10.1038/natrevmats.2016.52
  • 发表时间:
    2016-08-17
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Manish Chhowalla;Debdeep Jena;Hua Zhang
  • 通讯作者:
    Hua Zhang
Photoluminescence-Based Electron and Lattice Temperature Measurements in GaN-Based HEMTs
  • DOI:
    10.1007/s11664-013-2841-3
  • 发表时间:
    2013-11-23
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jorge A. Ferrer-Pérez;Bruce Claflin;Debdeep Jena;Mihir Sen;Ramakrishna Vetury;Donald Dorsey
  • 通讯作者:
    Donald Dorsey
Evidence of many-body, fermi-energy edge singularity in InN films grown on GaN buffer layers
GaN 缓冲层上生长的 InN 薄膜中多体费米能边缘奇点的证据
Growth windows of epitaxial NbN x films on c -plane sapphire and their structural and superconducting properties
c面蓝宝石外延NbN x 薄膜的生长窗口及其结构和超导性能
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Wright;Huili Grace;Debdeep Jena
  • 通讯作者:
    Debdeep Jena
スパッタアニールAlN上GaN/AlN 2次元正孔ガス構造の電気特性評価と微細構造解析
溅射退火AlN上GaN/AlN二维空穴气体结构的电性能评估和微观结构分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    西村 海音;中西 悠太;林 侑介;藤平 哲也;Chaudhuri Reet;Cho Yongjin;Xing Huili (Grace);Debdeep Jena;上杉 謙次郎;三宅 秀人;酒井 朗
  • 通讯作者:
    酒井 朗

Debdeep Jena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debdeep Jena', 18)}}的其他基金

I-Corps: Aluminum Nitride-based Power Transistors
I-Corps:氮化铝基功率晶体管
  • 批准号:
    1933825
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Integrated Room Temperature Single-Photon based Quantum-Secure LiFi Systems
RAISE-TAQS:集成室温单光子量子安全 LiFi 系统
  • 批准号:
    1839196
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Polarization-Driven Electron-Hole Bilayers in Quantum Wells
量子阱中偏振驱动的电子空穴双层
  • 批准号:
    1710298
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Extreme Bandgap Semiconductors
DMREF:协作研究:极限带隙半导体
  • 批准号:
    1534303
  • 财政年份:
    2015
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
2D Crystal Semiconductors: Electron Transport and Device Applications
2D 晶体半导体:电子传输和器件应用
  • 批准号:
    1523356
  • 财政年份:
    2015
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
2D Crystal Semiconductors: Electron Transport and Device Applications
2D 晶体半导体:电子传输和器件应用
  • 批准号:
    1232191
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Nanoscale Optoelectronics with Polarization and Bandgap Engineered Nitride Nanowire/Silicon Heterostructures
具有偏振和带隙工程氮化物纳米线/硅异质结构的纳米级光电器件
  • 批准号:
    0907583
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Evaluation of Graphene Nanoribbons for Lateral Bandgap Engineered Devices
用于横向带隙工程器件的石墨烯纳米带的评估
  • 批准号:
    0802125
  • 财政年份:
    2008
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: Dielectric Engineering of Quantum Wire Solids: Fundamentals to Applications
职业:量子线固体的介电工程:应用基础
  • 批准号:
    0645698
  • 财政年份:
    2007
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant

相似海外基金

EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
  • 批准号:
    1849079
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
  • 批准号:
    1741618
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
  • 批准号:
    1741660
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
  • 批准号:
    1741673
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
  • 批准号:
    1741666
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
  • 批准号:
    1741693
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
  • 批准号:
    1741565
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
  • 批准号:
    1741677
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
  • 批准号:
    1741685
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocal, topologically protected propagation using atomically thin materials for nanoscale devices
EFRI NewLAW:使用原子级薄材料用于纳米级设备的非互易、拓扑保护传播
  • 批准号:
    1741691
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了