Texas Analysis and Mathematical Physics Symposium
德克萨斯分析与数学物理研讨会
基本信息
- 批准号:1643220
- 负责人:
- 金额:$ 2.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-11-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for the 2016 Texas Analysis and Mathematical Physics Symposium that will take place at Rice University in Houston, Texas on October 21-23, 2016. The Texas Analysis and Mathematical Physics Symposium is a regional weekend meeting held annually, hosted in turn by Rice University, the University of Texas at Austin, and occasionally other institutions in the region. It is intended for the participation of around 60 people, including 25 non-local graduate students. The workshop brings together many senior mathematicians from Texas and neighboring states, who may not otherwise have an opportunity to discuss mathematics together throughout the year. Structurally the symposium consists of 7 main lectures given by nationally recognized leaders in the field, and contributed sessions (including a poster session) for advanced graduate students and participating researchers from regional universities, to present their work. This will provide graduate students with an opportunity to obtain feedback from senior faculty from other departments. The networking activities made possible by the Symposium will prove to be a valuable experience for young researchers. The Symposium encourages and financially supports participation by students, recent Ph.D. recipients, and members of groups underrepresented in mathematics. The Symposium is a forum for regional specialists in mathematical physics and related areas of analysis to become familiar with the latest problems and present their own results; in addition it introduces young mathematicians to the current state of the subject.This year's Symposium will focus on the areas where harmonic analysis, dynamical systems theory, spectral theory, and partial differential equations intersect and interact. More information, including a list of speakers and abstracts, registration information, and an archive of the past symposium can be found at the website of the meeting:https://www.ma.utexas.edu/users/tc/TeXAMP/TeXAMP-2016/TeXAMP-2016.html
该奖项为将于2016年10月21日至23日在德克萨斯州休斯敦莱斯大学举行的2016年德克萨斯分析与数学物理研讨会提供支持。德州分析与数学物理研讨会是一个地区性的周末会议,每年举行一次,由莱斯大学、德克萨斯大学奥斯汀分校轮流主办,偶尔也由该地区的其他机构主办。约有60人参加,其中包括25名非本地研究生。研讨会汇集了许多来自德克萨斯州和邻近州的高级数学家,否则他们可能没有机会在一年中一起讨论数学。从结构上讲,研讨会包括由该领域的国家公认的领导者提供的7个主要讲座,以及为来自地区大学的高级研究生和参与研究人员提供的会议(包括海报会议),以介绍他们的工作。这将为研究生提供一个从其他部门的高级教师那里获得反馈的机会。研讨会所促成的网络活动将证明是青年研究人员的宝贵经验。研讨会鼓励学生、新近获得博士学位的人以及数学领域未被充分代表的群体成员参加,并为他们提供资金支持。研讨会是数学物理和相关分析领域的区域专家熟悉最新问题并介绍他们自己的结果的论坛;此外,它还向年轻的数学家介绍了这一学科的现状。今年的研讨会将集中讨论谐波分析、动力系统理论、谱理论和偏微分方程的交叉和相互作用。更多信息,包括演讲者名单和摘要、注册信息和过去研讨会的档案,可在会议的网站上找到:https://www.ma.utexas.edu/users/tc/TeXAMP/TeXAMP-2016/TeXAMP-2016.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Damanik其他文献
Opening Gaps in the Spectrum of Strictly Ergodic Jacobi and CMV Matrices
严格遍历雅可比和 CMV 矩阵谱中的空白
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David Damanik;Long Li - 通讯作者:
Long Li
Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, I. The essential support of the measure
具有 Fibonacci Verblunsky 系数的单位圆上的正交多项式,I. 测度的基本支持
- DOI:
10.1016/j.jat.2013.04.001 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
David Damanik;P. Munger;W. Yessen - 通讯作者:
W. Yessen
Multi-scale analysis implies strong dynamical localization
多尺度分析意味着强大的动态定位
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
David Damanik;P. Stollmann - 通讯作者:
P. Stollmann
The rotation number for the Schrödinger operator with $$\alpha $$ -norm almost periodic measures
- DOI:
10.1007/s00209-024-03558-w - 发表时间:
2024-07-09 - 期刊:
- 影响因子:1.000
- 作者:
David Damanik;Gang Meng;Meirong Zhang;Zhe Zhou - 通讯作者:
Zhe Zhou
Lyapunov exponents of continuous Schrödinger cocycles over irrational rotations
- DOI:
10.1007/s10231-006-0029-7 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:0.900
- 作者:
Kristian Bjerklöv;David Damanik;Russell Johnson - 通讯作者:
Russell Johnson
David Damanik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Damanik', 18)}}的其他基金
Texas Analysis and Mathematical Physics Symposium
德克萨斯分析与数学物理研讨会
- 批准号:
1907439 - 财政年份:2019
- 资助金额:
$ 2.46万 - 项目类别:
Standard Grant
Texas Analysis and Mathematical Physics Symposium
德克萨斯分析与数学物理研讨会
- 批准号:
1309391 - 财政年份:2013
- 资助金额:
$ 2.46万 - 项目类别:
Standard Grant
RTG: Analysis, Geometry, and Topology at Rice University
RTG:莱斯大学的分析、几何和拓扑
- 批准号:
1148609 - 财政年份:2012
- 资助金额:
$ 2.46万 - 项目类别:
Continuing Grant
Dynamics of Asynchronous Networks, Adaptation and Visualization
异步网络的动态、适应和可视化
- 批准号:
1265253 - 财政年份:2012
- 资助金额:
$ 2.46万 - 项目类别:
Standard Grant
Dynamical Systems and Spectral Theory
动力系统和谱理论
- 批准号:
1067988 - 财政年份:2011
- 资助金额:
$ 2.46万 - 项目类别:
Continuing Grant
Dynamics of Schroedinger Cocycles and Applications to Spectral Theory
薛定谔余循环动力学及其在谱理论中的应用
- 批准号:
0800100 - 财政年份:2008
- 资助金额:
$ 2.46万 - 项目类别:
Standard Grant
Positive Lyapunov Exponents for Schroedinger Cocycles
薛定谔循环的正李亚普诺夫指数
- 批准号:
0653720 - 财政年份:2006
- 资助金额:
$ 2.46万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems
ARC 细胞系统数学分析卓越中心
- 批准号:
CE230100001 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
ARC Centres of Excellence
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
- 批准号:
EP/X035883/1 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
Research Grant
Mathematical analysis of the steady flow of a viscous fluid depending on topological properties of the domain
根据域的拓扑特性对粘性流体的稳定流动进行数学分析
- 批准号:
22KJ2953 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Understanding the effect of mutations on cell behaviour in blood disorders through mathematical modelling and computational analysis
通过数学建模和计算分析了解突变对血液疾病细胞行为的影响
- 批准号:
2887435 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
Studentship
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
- 批准号:
10729420 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
- 批准号:
2246724 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
Continuing Grant
Anomalous Diffusion: Physical Origins and Mathematical Analysis
反常扩散:物理起源和数学分析
- 批准号:
2306254 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
Continuing Grant
Mathematical modeling and mathematical analysis of bacterial colony patterns
细菌菌落模式的数学建模和数学分析
- 批准号:
23K03225 - 财政年份:2023
- 资助金额:
$ 2.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)