Substrate Rigidity and Long Non-Coding RNA Expression: Role of TRPV4 Ion Channel

底物刚性和长非编码 RNA 表达:TRPV4 离子通道的作用

基本信息

  • 批准号:
    1662776
  • 负责人:
  • 金额:
    $ 39.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The stiffness of the organic material (the matrix) that cells grow on changes numerous cellular functions including migration, proliferation, and differentiation. Using a substrate that provides the correct mechanical cues to cells is a promising approach for enhancing tissue repair/regeneration and facilitating tissue-biomaterials integration. Long non-coding ribonucleic acids (LncRNAs) are messenger molecules that are powerful regulators of cell differentiation, development, and important during the progress of cancers. Since matrix stiffness changes cell functions, the project will test whether stiffness regulates LncRNA production. One important cell change that we think is associated with LncRNA production is the epithelial-mesenchymal-transition (EMT). This is an essential cellular process in development, tissue repair, scar formation, and cancer development that changes whether the cells are quiescent or migratory. This project will identify LncRNAs that are turned on or off in a matrix stiffness-dependent manner under conditions that cause EMT. The overall goal of this research program is to produce transformative contributions to the current understanding of the role of matrix stiffness signals in LncRNA expression and cell differentiation. By enhancing our understanding of how matrix properties regulate gene expression in cells, results of this research will have broad-ranging impacts in fields as diverse as cell-biomaterial interactions, cell mechanotransduction, and molecular and cell biology of gene regulation. The PI will will provide opportunities for undergraduate and graduate students to work on independent projects, and will create a summer course on 'Cell Biomechanics' in collaboration with the University of Maryland's Upward Bound Math-Science program for high school students from underrepresented groupsThe objective of this project is to identify and characterize matrix stiffness-sensitive LncRNAs using global expression analysis, and to determine the role of TRPV4 in matrix stiffness-induced LncRNA expression and EMT. Based on the preliminary data, the central hypothesis is that matrix stiffness controls LncRNA expression, and thereby EMT in a manner dependent on TRPV4. Two Specific Aims will test this hypothesis by utilizing molecular strategies involving human and mouse normal primary cells, TRPV4 null and congenic wild-type mice, LncRNA arrays, and in vitro and in vivo models of the EMT. Specific Aim 1 will identify and characterize matrix stiffness-sensitive LncRNAs using in vitro and in vivo model systems. Specific Aim 2 will delineate the association between TRPV4, matrix stiffness-sensitive LncRNAs, and modulation of EMT. When completed, we expect that the results of this study will provide novel information and insight regarding the molecular mechanisms mediating LncRNA expression and EMT.
细胞赖以生长的有机物质(基质)的硬度改变了许多细胞功能,包括迁移、增殖和分化。使用一种为细胞提供正确机械信号的基质是一种很有前途的方法,可以增强组织修复/再生,促进组织与生物材料的整合。长链非编码核糖核酸(lncrna)是一种信使分子,在细胞分化、发育和癌症发展过程中起着重要的调节作用。由于基质刚度改变细胞功能,该项目将测试刚度是否调节LncRNA的产生。我们认为与LncRNA产生相关的一个重要细胞变化是上皮-间质转化(EMT)。这是细胞发育、组织修复、疤痕形成和癌症发展过程中必不可少的细胞过程,它改变了细胞是静止的还是迁移的。该项目将确定在导致EMT的条件下,以矩阵刚度依赖的方式开启或关闭的lncrna。本研究计划的总体目标是对目前对基质刚度信号在LncRNA表达和细胞分化中的作用的理解做出革命性的贡献。通过增强我们对细胞中基质特性如何调节基因表达的理解,本研究的结果将在细胞-生物材料相互作用、细胞机械转导以及基因调控的分子和细胞生物学等领域产生广泛的影响。该项目将为本科生和研究生提供独立项目的工作机会,并将与马里兰大学的上界数学科学项目合作,为来自代表性不足群体的高中生开设“细胞生物力学”暑期课程。该项目的目标是利用全局表达分析识别和表征矩阵刚度敏感的lncrna。并确定TRPV4在基质刚度诱导的LncRNA表达和EMT中的作用。根据初步数据,中心假设是基质刚度控制LncRNA表达,从而以依赖于TRPV4的方式控制EMT。Two Specific Aims将通过使用涉及人和小鼠正常原代细胞、TRPV4缺失和基因野生型小鼠、LncRNA阵列以及体外和体内EMT模型的分子策略来验证这一假设。特异性目标1将在体外和体内模型系统中识别和表征基质刚度敏感的lncrna。Specific Aim 2将描述TRPV4、基质刚度敏感lncrna和EMT调制之间的关系。当完成时,我们期望这项研究的结果将为介导LncRNA表达和EMT的分子机制提供新的信息和见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaik Rahaman其他文献

Shaik Rahaman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
  • 批准号:
    2349566
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
  • 批准号:
    10656057
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Discovery Early Career Researcher Award
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
  • 批准号:
    23K12969
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
  • 批准号:
    2315629
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
  • 批准号:
    2304684
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
  • 批准号:
    2304697
  • 财政年份:
    2023
  • 资助金额:
    $ 39.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了