Derived invariants of commutative rings
交换环的导出不变量
基本信息
- 批准号:0602498
- 负责人:
- 金额:$ 13.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of this project is derived categories arising in commutative algebra. The investigator and his collaborators bring to bear a point of view on triangulated categories fashioned in algebraic topology to establish new results on, and unearth surprising connections among, classical invariants of modules over commutative rings. Another aspect of the proposed research concerns derived categories as a whole, and is inspired by recent spectacular developments in the representation theory of finite dimensional algebra, due to Rouquier: extending earlier work of Konstevich, Bondal and Van den Bergh, and others, on derived categories of coherent sheaves, Rouquier settled a long standing question concerning Auslander's representation dimension, and also an important conjecture of Benson concerning modular representations of finite groups. To this end, Rouquier introduced a notion of a dimension for derived categories, and demonstrated its relevance to representation theory and algebraic geometry. A crucial step Rouquier's work is a lower bound on the derived category of the exterior algebra on a vector space over a field of characteristic two, which is an example of a zero-dimensional commutative complete intersection ring. The project will investigate the dimension of derived categories of general commutative rings, with emphasis on locally complete intersections. This brings in, and contributes to the study of, Hochschild cohomology of commutative algebra. The results obtained will serve to clarify that relationship between dimension and classical invariants of rings. Techniques developed here would have an impact on developments in representation theory and algebraic geometry.It has long been recognized that derived categories, which were introduced by Verdier in the mid-sixties and in the context of algebraic geometry and commutative algebra, provide a convenient milieu for doing homological algebra. However, it has been realized over the last fifteen years that derived categories, and more generally, triangulated categories, are also exceptionally well-suited for expressing (and proving!) results in diverse subjects in mathematics and mathematical physics. This has had the effect that methods developed in one field have often profoundly influenced a host of others, and generated new interactions among them. One of the main components of the research outlined in this proposal seeks to exploit a elementary notion arising in algebraic topology, namely, the idea of `building' objects out of a given collections of objects in a triangulated category, and bring them to be bear on problems in commutative algebra. The project promises to have an impact on the study of derived categories in general, and, in particular, on geometry, representation theory, and algebraic topology.
这个项目的重点是交换代数中出现的派生范畴。 调查员和他的合作者带来承担的角度来看,三角形的范畴形成的代数拓扑建立新的结果,并发掘令人惊讶的连接,经典的不变量的模块交换环。另一个方面的拟议研究关注派生类别作为一个整体,并受到最近壮观的发展,在表示理论的有限维代数,由于鲁基耶:扩展了Konstevich、Bondal和货车den Bergh等人关于凝聚层的派生范畴的早期工作,Rouquier解决了一个长期存在的关于Auslander表示维的问题,也是Benson关于有限群模表示的一个重要猜想。为此,鲁基耶引入了派生范畴的维数概念,并证明了它与表示论和代数几何的相关性。一个关键的步骤Rouquier的工作是一个下界的导出范畴的外代数的向量空间的领域的特征2,这是一个例子,一个零维交换完全相交环。 该项目将研究一般交换环的衍生类别的维数,重点是局部完全相交。这带来了,并有助于研究,Hochschild上同调的交换代数。 所得结果将有助于阐明环的维数与经典不变量之间的关系。这里发展的技术将对表示论和代数几何的发展产生影响。人们早就认识到,由Verdier在60年代中期引入的代数几何和交换代数的导出范畴为做同调代数提供了一个方便的环境。然而,在过去的15年里,人们已经认识到,派生范畴,更一般地说,三角范畴,也非常适合于表达(和证明!)结果在数学和数学物理的不同科目。 这就产生了这样的效果,即在一个领域发展起来的方法往往深刻地影响了许多其他领域,并在它们之间产生了新的相互作用。一个主要组成部分的研究概述了这一建议,旨在利用一个基本概念所产生的代数拓扑结构,即“建设”的想法对象的一个给定的集合中的一个三角范畴,并使他们承担的问题,在交换代数。该项目有望产生影响的研究派生类别一般,特别是在几何,表示理论和代数拓扑。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stratifying modular representations of finite groups
- DOI:10.4007/annals.2011.174.3.6
- 发表时间:2008-10
- 期刊:
- 影响因子:0
- 作者:D. Benson;S. Iyengar;H. Krause
- 通讯作者:D. Benson;S. Iyengar;H. Krause
Local cohomology and support for triangulated categories
- DOI:10.24033/asens.2076
- 发表时间:2007-02
- 期刊:
- 影响因子:1.9
- 作者:D. Benson;S. Iyengar;H. Krause
- 通讯作者:D. Benson;S. Iyengar;H. Krause
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srikanth Iyengar其他文献
Fully Automated Agatston Score Calculation From Electrocardiography-Gated Cardiac Computed Tomography Using Deep Learning and Multi-Organ Segmentation: A Validation Study.
使用深度学习和多器官分割从心电图门控心脏计算机断层扫描全自动计算 Agatston 评分:一项验证研究。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
Ashish Gautam;Prashant Raghav;Vijay Subramaniam;Sunil Kumar;Sudeep Kumar;Dharmendra Jain;Ashish Verma;Parminder Singh;Manphoul Singhal;Vikash Gupta;S. Rathore;Srikanth Iyengar;Sudhir Rathore - 通讯作者:
Sudhir Rathore
Class and rank of differential modules THANKSREF="*" ID="*"Research partly supported by NSF grant DMS 0201904 (L.L.A.), NSERC grant 3-642-114-80 (R.O.B.), and NSF grant DMS 0442242 (S.I.).
- DOI:
10.1007/s00222-007-0041-6 - 发表时间:
2007-03-07 - 期刊:
- 影响因子:3.600
- 作者:
Luchezar L. Avramov;Ragnar-Olaf Buchweitz;Srikanth Iyengar - 通讯作者:
Srikanth Iyengar
Srikanth Iyengar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srikanth Iyengar', 18)}}的其他基金
Local Algebra and Local Representation Theory
局部代数和局部表示论
- 批准号:
2001368 - 财政年份:2020
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory
交换代数的同调方面及其在模表示理论中的应用
- 批准号:
1700985 - 财政年份:2017
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Conference Proposal: Geometric and topological aspects of the representation theory of finite groups
会议提案:有限群表示论的几何和拓扑方面
- 批准号:
1624050 - 财政年份:2016
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra
会议提案:表示论、代数拓扑学和交换代数之间的相互作用
- 批准号:
1501399 - 财政年份:2015
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
- 批准号:
1503044 - 财政年份:2014
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
- 批准号:
1123059 - 财政年份:2012
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
- 批准号:
1201889 - 财政年份:2012
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Derived categories of complete intersections and Hochschild cohomology
完全交集和 Hochschild 上同调的派生范畴
- 批准号:
0903493 - 财政年份:2009
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
- 批准号:
0442242 - 财政年份:2004
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
- 批准号:
0302892 - 财政年份:2003
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
相似国自然基金
图拓扑指数及相关问题的研究
- 批准号:2020JJ4423
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
- 批准号:
MR/Y011716/1 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Fellowship
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Motivic invariants and birational geometry of simple normal crossing degenerations
简单正态交叉退化的动机不变量和双有理几何
- 批准号:
EP/Z000955/1 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Research Grant
Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
- 批准号:
2344680 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
Rational GAGA and Applications to Field Invariants
Rational GAGA 及其在场不变量中的应用
- 批准号:
2402367 - 财政年份:2024
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Ramsey-type problems from graph-invariants
图不变量的拉姆齐型问题
- 批准号:
23K03204 - 财政年份:2023
- 资助金额:
$ 13.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 13.9万 - 项目类别:
Continuing Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
- 批准号:
2304990 - 财政年份:2023
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 13.9万 - 项目类别:
Standard Grant