Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
基本信息
- 批准号:0302892
- 负责人:
- 金额:$ 8.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for the ward of Iyengar DMS-0302892 The investigator and his collaborators address a number of specific problems in the homological theory of modules over commutative rings, and develop some tools intended for further research in this topic. One example of the first aspect of the project is the proposed study of the asymptotic behaviour of Betti numbers of the Frobenius endomorphism. The paradigm for the results sought is Kunz's theorem: local ring of non-zero characteristic is regular precisely when the Frobenius endomorphism is flat. A second example concerns Koszul algebras: the investigator will build on recent work with Herzog that was motivated by results of Eisenbud, Floystad, and Schreyer on the relationship between linear strands of resolutions over a polynomial ring and modules over its Koszul dual exterior algebra. Some of the techniques proposed are derived from rational homotopy theory, and a guiding light in this endeavour is the "Looking glass principle" of Avramov and Halperin. However, many of the crucial results that govern it have not been pinned down in the desired level of detail. Avramov and the investigator propose a manuscript that fills this gap in the literature. The project will also investigate the role of cellular approximations, staple to topologists, in the context of commutative rings.In the second half of the 19th century, David Hilbert discovered a close relationship between geometric objects called varieties, and certain types of functions defined onthem. The latter form algebraic gadgets called commutative rings. Over the last century, commutative rings have arisen in combinatorics, topology, and other branches of mathematics. They have also found applications in diverse fields like cryptography, pattern recognition, and theoretical physics. This project seeks to apply techinques from 'homological algebra' to study commutative rings. Topology has been a major force in the development of homological algebra, although some of its roots can be traced to geometry. Homological methods have proved remarkably efficacious in tackling problems in commutative algebra; in turn, this has infused new ideas into the subject.
研究者和他的合作者解决了交换环上模的同调理论中的一些具体问题,并开发了一些用于进一步研究这一主题的工具。项目的第一个方面的一个例子是提议的研究Frobenius自同态的Betti数的渐近行为。所寻求的结果的范式是Kunz定理:当Frobenius自同态为平时,非零特征的局部环恰好是正则的。第二个例子与Koszul代数有关:研究者将以Herzog最近的工作为基础,该工作受到Eisenbud, Floystad和Schreyer关于多项式环上分辨率的线性链与其Koszul对偶外部代数上的模之间关系的结果的启发。一些被提出的技术来源于理性同伦理论,而在这一努力中的指路明灯是Avramov和Halperin的“镜子原理”。然而,许多决定它的关键结果并没有被确定在期望的细节水平上。阿夫拉莫夫和研究者提出了一份手稿来填补这一文献空白。该项目还将调查细胞近似的作用,主要是拓扑学家,在交换环的背景下。在19世纪下半叶,大卫·希尔伯特(David Hilbert)发现了一种密切的关系,即几何对象的变种(variation)与在其上定义的某些类型的函数之间的关系。后者形成代数小部件,称为交换环。在上个世纪,交换环在组合学、拓扑学和其他数学分支中出现。它们也在密码学、模式识别和理论物理等不同领域得到了应用。这个项目试图应用“同调代数”的技术来研究交换环。拓扑学一直是同态代数发展的主要力量,尽管它的一些根源可以追溯到几何。同调方法在处理交换代数问题中被证明是非常有效的;反过来,这又为这一学科注入了新的思想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srikanth Iyengar其他文献
Fully Automated Agatston Score Calculation From Electrocardiography-Gated Cardiac Computed Tomography Using Deep Learning and Multi-Organ Segmentation: A Validation Study.
使用深度学习和多器官分割从心电图门控心脏计算机断层扫描全自动计算 Agatston 评分:一项验证研究。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
Ashish Gautam;Prashant Raghav;Vijay Subramaniam;Sunil Kumar;Sudeep Kumar;Dharmendra Jain;Ashish Verma;Parminder Singh;Manphoul Singhal;Vikash Gupta;S. Rathore;Srikanth Iyengar;Sudhir Rathore - 通讯作者:
Sudhir Rathore
Class and rank of differential modules THANKSREF="*" ID="*"Research partly supported by NSF grant DMS 0201904 (L.L.A.), NSERC grant 3-642-114-80 (R.O.B.), and NSF grant DMS 0442242 (S.I.).
- DOI:
10.1007/s00222-007-0041-6 - 发表时间:
2007-03-07 - 期刊:
- 影响因子:3.600
- 作者:
Luchezar L. Avramov;Ragnar-Olaf Buchweitz;Srikanth Iyengar - 通讯作者:
Srikanth Iyengar
Srikanth Iyengar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srikanth Iyengar', 18)}}的其他基金
Local Algebra and Local Representation Theory
局部代数和局部表示论
- 批准号:
2001368 - 财政年份:2020
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory
交换代数的同调方面及其在模表示理论中的应用
- 批准号:
1700985 - 财政年份:2017
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Conference Proposal: Geometric and topological aspects of the representation theory of finite groups
会议提案:有限群表示论的几何和拓扑方面
- 批准号:
1624050 - 财政年份:2016
- 资助金额:
$ 8.58万 - 项目类别:
Standard Grant
Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra
会议提案:表示论、代数拓扑学和交换代数之间的相互作用
- 批准号:
1501399 - 财政年份:2015
- 资助金额:
$ 8.58万 - 项目类别:
Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
- 批准号:
1503044 - 财政年份:2014
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
- 批准号:
1123059 - 财政年份:2012
- 资助金额:
$ 8.58万 - 项目类别:
Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
- 批准号:
1201889 - 财政年份:2012
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Derived categories of complete intersections and Hochschild cohomology
完全交集和 Hochschild 上同调的派生范畴
- 批准号:
0903493 - 财政年份:2009
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Derived invariants of commutative rings
交换环的导出不变量
- 批准号:
0602498 - 财政年份:2006
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
- 批准号:
0442242 - 财政年份:2004
- 资助金额:
$ 8.58万 - 项目类别:
Standard Grant
相似海外基金
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
- 批准号:
MR/Y011716/1 - 财政年份:2024
- 资助金额:
$ 8.58万 - 项目类别:
Fellowship
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Motivic invariants and birational geometry of simple normal crossing degenerations
简单正态交叉退化的动机不变量和双有理几何
- 批准号:
EP/Z000955/1 - 财政年份:2024
- 资助金额:
$ 8.58万 - 项目类别:
Research Grant
Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
- 批准号:
2344680 - 财政年份:2024
- 资助金额:
$ 8.58万 - 项目类别:
Standard Grant
Rational GAGA and Applications to Field Invariants
Rational GAGA 及其在场不变量中的应用
- 批准号:
2402367 - 财政年份:2024
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Ramsey-type problems from graph-invariants
图不变量的拉姆齐型问题
- 批准号:
23K03204 - 财政年份:2023
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
- 批准号:
2304990 - 财政年份:2023
- 资助金额:
$ 8.58万 - 项目类别:
Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 8.58万 - 项目类别:
Standard Grant