GOALI: Understanding and Controlling Heat Transport Mechanisms in Nano-Layered Materials for Energy Harvesting Thermal Barrier Coatings in Jet Engines

目标:了解和控制喷气发动机能量收集热障涂层纳米层材料的热传输机制

基本信息

  • 批准号:
    1706388
  • 负责人:
  • 金额:
    $ 28.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-01-31
  • 项目状态:
    已结题

项目摘要

With an exploding population and rapid advances in power consuming technologies, our society faces a critical roadblock in continued advancement and future sustainability. Major advances in materials, processes and systems must cleanly increase energy generation efficiency, while decreasing the net wasted heat, which will not only increase the energy used as work but also decrease the consumption of nonrenewable resources. Therefore, a potential ideal path forward in this world-wide energy crisis is to improve power production efficiency while also harvesting the energy that is rejected as otherwise wasted heat. This concept relies on improving the efficiency of existing technologies while recycling energy to improve the net power production; that is, using byproducts of energy sources to recycle and reuse. An example of advancements in energy efficiency through "thermal first" engineering of material components of a system is an aircraft engine, in which reductions in the thermal conductivities of thermal barrier coating materials enable higher temperature operation of turbines. These high operating temperatures translate directly to improvements in power output. To address this critical issue, this project will focus on advances in understanding of nano- and microscale thermal properties of thermal barrier coatings comprised of high-temperature stable thermoelectric nanomaterial systems as it relates to gas-turbine engine technologies. More specifically, this project will develop the fundamental thermal transport understanding of how phonon scattering processes are impacted by spatially varying defects in novel nanoscale-layered oxide thermal barrier coatings materials with ultralow thermal conductivities. This will result in material solutions for thermal barrier coatings that exhibit superior thermochemical protection while not relying on expensive rare earth elements that are typical in current state-of-the-art thermal barrier coatings. Furthermore, the ability of this class to materials to generate a thermoelectric response will enable power generation from the temperature gradients produced in the engine environments, thus allowing for recycling the otherwise wasted heat impinging on the turbine blades. This proposed work has far-reaching societal implications by both improving engine efficiency and advancing the field of high temperature waste heat recovery via oxide nanomaterials. Furthermore, the integration of our proposed industry and academic collaboration into curricula, outreach, and conference organization will maximize this broader impact through involvement from underrepresented groups in K-12 classrooms around Virginia. In partnership with Rolls-Royce, this project will advance the foundational understanding of phonon scattering and thermal transport in nanoscale layered structures with systematic experiments that demonstrate the interplay between crystal boundary scattering, phase purity, and vacancy and dopant scattering over a range of length scales and temperatures. The knowledge-base of how structural imperfections affect the thermal conductivity in naturally layered, anisotropic atomic structures with ultra-low thermal conductivities is lacking, especially at elevated temperatures relevant to engine environments where phonon-defect scattering can become more pronounced. Thus, part of this intellectual merit lies in understanding phonon transport processes in classes of nano-layered perovskite oxides that can exhibit thermoelectric responses at elevated temperatures, while assessing the applicability of current theories of phonon-defect and interface scattering in crystals as applied to these classes of thermoelectric materials. Therefore, additional intellectual merit of this proposed work will be the development and implementation of a procedure to extend time-domain thermoreflectance measurements to environments relevant to gas-turbine engine operation. These proposed advances, with further material integration and engine specific guidance from Rolls-Royce, will lead to the assessment of a potentially disruptive material solution in the form of a novel thermoelectric thermal barrier coating based on oxide nanomaterials.
随着人口的爆炸式增长和能源消费技术的快速发展,我们的社会在持续发展和未来的可持续性方面面临着一个关键的障碍。材料、工艺和系统的重大进步必须清洁地提高能源生产效率,同时减少净废热,这不仅会增加作为功使用的能源,还会减少不可再生资源的消耗。因此,在这场全球性的能源危机中,一个潜在的理想途径是在提高发电效率的同时,收集作为废热而被丢弃的能量。这一概念依赖于提高现有技术的效率,同时回收能源以提高净发电量;即利用能源的副产品进行回收再利用。通过系统材料组件的“热优先”工程来提高能源效率的一个例子是飞机发动机,其中热障涂层材料的热导率降低使涡轮机能够在更高的温度下运行。这些高工作温度直接转化为功率输出的改进。为了解决这一关键问题,该项目将重点研究由高温稳定热电纳米材料系统组成的热障涂层的纳米和微尺度热性能,因为它与燃气涡轮发动机技术有关。更具体地说,该项目将发展对声子散射过程如何受到具有超低导热系数的新型纳米层状氧化物热障涂层材料中空间变化缺陷的影响的基本热传输理解。这将导致热障涂层的材料解决方案,表现出卓越的热化学保护,而不依赖于昂贵的稀土元素,这是目前最先进的热障涂层的典型特征。此外,这类材料产生热电响应的能力将使发动机环境中产生的温度梯度发电成为可能,从而允许回收原本浪费在涡轮叶片上的热量。这项工作具有深远的社会意义,既可以提高发动机效率,又可以通过氧化物纳米材料推进高温废热回收领域。此外,将我们提议的产业和学术合作整合到课程、推广和会议组织中,将通过弗吉尼亚州K-12教室中代表性不足的群体的参与,最大限度地发挥更广泛的影响。与Rolls-Royce合作,该项目将通过系统的实验来证明晶体边界散射、相纯度、空位和掺杂剂散射在一定长度尺度和温度范围内的相互作用,从而推进对纳米级层状结构中声子散射和热传输的基本理解。关于结构缺陷如何影响具有超低导热系数的自然分层、各向异性原子结构的导热系数的知识基础是缺乏的,特别是在与声子缺陷散射可能变得更加明显的发动机环境相关的高温下。因此,部分知识价值在于理解在高温下可以表现出热电响应的纳米层状钙钛矿氧化物中的声子传输过程,同时评估当前晶体中声子缺陷和界面散射理论应用于这些热电材料的适用性。因此,这项工作的额外智力价值将是开发和实施一种程序,将时域热反射测量扩展到与燃气涡轮发动机运行相关的环境。这些提议的进展,加上劳斯莱斯进一步的材料整合和发动机具体指导,将导致评估一种潜在的颠覆性材料解决方案,即基于氧化物纳米材料的新型热电热障涂层。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduced dependence of thermal conductivity on temperature and pressure of multi-atom component crystalline solid solutions
  • DOI:
    10.1063/1.5010337
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    A. Giri;Jeffrey L. Braun;P. Hopkins
  • 通讯作者:
    A. Giri;Jeffrey L. Braun;P. Hopkins
Anisotropic thermal conductivity tensor of β-Y2Si2O7 for orientational control of heat flow on micrometer scales
  • DOI:
    10.1016/j.actamat.2020.02.040
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Olson, David H.;Avincola, Valentina Angelici;Hopkins, Patrick E.
  • 通讯作者:
    Hopkins, Patrick E.
A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2
  • DOI:
    10.1016/j.jmat.2019.03.002
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Gild, Joshua;Braun, Jeffrey;Luo, Jian
  • 通讯作者:
    Luo, Jian
Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering
  • DOI:
    10.1016/j.ceramint.2019.11.186
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Gild, Joshua;Wright, Andrew;Luo, Jian
  • 通讯作者:
    Luo, Jian
Local thermal conductivity measurements to determine the fraction of α-cristobalite in thermally grown oxides for aerospace applications
局部热导率测量以确定航空航天应用热生长氧化物中α-方石英的比例
  • DOI:
    10.1016/j.scriptamat.2019.10.027
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Olson, David H.;Gaskins, John T.;Tomko, John A.;Opila, Elizabeth J.;Golden, Robert A.;Harrington, Gregory J.K.;Chamberlain, Adam L.;Hopkins, Patrick E.
  • 通讯作者:
    Hopkins, Patrick E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Hopkins其他文献

Acceptance-based therapy: the potential to augment behavioral interventions in the treatment of type 2 diabetes
基于接受的疗法:增强 2 型糖尿病治疗中行为干预的潜力
  • DOI:
    10.1038/s41387-020-0106-9
  • 发表时间:
    2020-01-21
  • 期刊:
  • 影响因子:
    5.200
  • 作者:
    Michelle I. Cardel;Kathryn M. Ross;Meghan Butryn;W. Troy Donahoo;Abraham Eastman;Julia R. Dillard;Anna Grummon;Patrick Hopkins;Leah D. Whigham;David Janicke
  • 通讯作者:
    David Janicke
The impact of device architecture on the thermal response of AlN/AlGaN digital alloy field-effect transistors
器件结构对氮化铝/氮化铝镓数字合金场效应晶体管热响应的影响
  • DOI:
    10.1016/j.applthermaleng.2025.126677
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Henry T. Aller;Thomas W. Pfeifer;Alexander Chaney;Kent Averett;Thaddeus Asel;Zachary Engel;Asif Khan;Patrick Hopkins;Alan Doolittle;Shin Mou;Samuel Graham
  • 通讯作者:
    Samuel Graham
Nursing Ethics Huddles to Decrease Moral Distress among Nurses in the Intensive Care Unit
护理道德聚会减少重症监护病房护士的道德困扰
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Chiafery;Patrick Hopkins;S. Norton;Margie Hodges Shaw
  • 通讯作者:
    Margie Hodges Shaw
The first two years of full population pilot newborn screening for lysosomal disorders: The Missouri experience
  • DOI:
    10.1016/j.ymgme.2014.12.014
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrea M. Atherton;Dawn Peck;Katherine Christensen;Kayla Smith;Linda Manwaring;Patrick Hopkins;Sharmini Rogers;Jami Kiesling;Esperanza Font-Montgomery;Richard Hillman;Stephen Braddock;Marwan Shinawi;Dorothy K. Grange;Bryce A. Heese
  • 通讯作者:
    Bryce A. Heese
An evidence-based approach to breastfeeding neonates at risk for hypoglycemia.
对有低血糖风险的新生儿进行母乳喂养的循证方法。

Patrick Hopkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Hopkins', 18)}}的其他基金

Enhanced conductance at interfaces by ballistic thermal injection
通过弹道热注入增强界面电导
  • 批准号:
    2318576
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Mitigation of Thermal Resistance in High Power Photodiodes as a Means to Increase Device Performance
减轻高功率光电二极管的热阻是提高器件性能的一种方法
  • 批准号:
    1509362
  • 财政年份:
    2015
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
EAGER: Solid-state thermal switching
EAGER:固态热开关
  • 批准号:
    1339436
  • 财政年份:
    2013
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Three-Dimensional Multi-Wavelength Raman Spectrometer for the Nanotechnology Characterization
MRI:获取三维多波长拉曼光谱仪用于纳米技术表征
  • 批准号:
    1229603
  • 财政年份:
    2012
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding and Controlling Structure in Metal Ion-Linked Multilayer Upconversion Solar Cells
了解和控制金属离子连接多层上转换太阳能电池的结构
  • 批准号:
    2327754
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
  • 批准号:
    2340688
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Continuing Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
  • 批准号:
    2906295
  • 财政年份:
    2024
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Studentship
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313727
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
  • 批准号:
    2313726
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Magnetic Two-Dimensional Crystals
理解和控制磁性二维晶体
  • 批准号:
    2326944
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Standard Grant
Toward a Better Understanding of Factors Controlling Selectivity in Deoxy Sugar Oligosaccharide Synthesis
更好地了解控制脱氧低聚糖合成选择性的因素
  • 批准号:
    2246963
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Continuing Grant
Understanding and controlling neuropeptide GPCR-transducer coupling
了解和控制神经肽 GPCR-传感器耦合
  • 批准号:
    FT220100617
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    ARC Future Fellowships
Understanding and controlling autistic learners' engagement fluctuations through a technology-mediated learning environment
通过技术介导的学习环境理解和控制自闭症学习者的参与波动
  • 批准号:
    23K12810
  • 财政年份:
    2023
  • 资助金额:
    $ 28.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了