Carrier dynamics and fast switching by dipole engineering in solution processed thin film transistors
溶液处理薄膜晶体管中偶极子工程的载流子动力学和快速切换
基本信息
- 批准号:1707588
- 负责人:
- 金额:$ 35.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract: Non-Technical: Low-cost, large area, solution processed, thin film polymer transistors are emerging as a next-generation technology, allowing electronic components to be integrated into flexible substrates. However, polymer thin film transistors suffer from low switching times, rendering their use in analytical and digital logic circuits problematic. Fast switching times in polymer transistors may be achieved by miniaturizing the device size, but this requires nanolithography, which is impractical for low-cost printing methods. This project utilizes low-cost strategies for materials engineering to improve switching times by orders of magnitude compared to the present state-of-the-art thin film polymer transistors, which will open up the printed polymer circuit technology for many new applications. Furthermore, a new experimental method based on non-linear optics will be developed for probing and visualizing the motion of charges in polymer transistors. This technique allows an accurate determination of the carrier mobility, which is a crucial parameter that controls switching times. The connection between technology and education will be reinforced by designing projects where undergraduate students will print polymer logic circuits as part of their Advanced Physics Laboratory course. The international scope will provide US students transferable skills that are essential for employment in industry and academia. Graduate and undergraduate students will gain expertise in a multidisciplinary range of technical skills, and thus be trained to contribute to the US workforce in the area of flexible electronics. Hands-on workshops for high school students and mentoring programs for underrepresented graduate students will also be part of the project.Technical: The objective of this program is to improve switching times in all-polymer thin film transistors and to develop a non-linear optical method for visualization of carrier transport. Dipole engineering of the dielectric layer, using low-cost solvent processing and poling polymer ferroelectric dielectrics, is likely to have a transformative impact on technology where fast switching times may be realized in long-channel printable thin film organic field-effect transistors and logic circuits. A new series of side-chain substituted donor-acceptor copolymers will be used as the active semiconductor layer. Carrier mobilities of organic semiconductors in field-effect transistors are strongly impacted by device geometry, physical/chemical attributes of the organic semiconductor, and the various interfaces: metal-semiconductor and semiconductor-insulator. Transient electric field-induced second-harmonic generation methods, based on the third-order susceptibility, will be established, allowing direct and selective probing of dynamic carrier motion in field-effect transistors. This technique will be a powerful methodology for visualizing transport in a new generation of donor-acceptor ambipolar transistors and pave the way for predicting accurate carrier mobilities, free from contact resistance issues and device geometrical factors. Grazing angle X-ray scattering studies from polymer films in transistor architectures will reveal not just the structure of the polymer, but also the changes in structure upon bias stress.
摘要:非技术:低成本,大面积,溶液加工,薄膜聚合物晶体管正在作为下一代技术出现,从而使电子组件可以集成到柔性底物中。但是,聚合物薄膜晶体管的切换时间较低,使它们在分析和数字逻辑电路中的使用有问题。可以通过将设备尺寸微型化来实现聚合物晶体管中的快速切换时间,但这需要纳米光刻,这对于低成本打印方法是不切实际的。与当前的最新薄膜聚合物晶体管相比,该项目利用材料工程的低成本策略来通过数量级来改善切换时间,这将为许多新应用开放印刷聚合物电路技术。此外,将开发一种基于非线性光学器件的新实验方法,用于探测和可视化聚合物晶体管中电荷的运动。该技术允许准确确定载流子迁移率,这是控制切换时间的关键参数。技术与教育之间的联系将通过设计项目来加强本科生将作为其高级物理实验室课程的一部分打印聚合物逻辑电路的项目。国际范围将为我们的学生提供可转移的技能,这对于在行业和学术界就业至关重要。研究生和本科生将获得多学科技术技能的专业知识,因此接受培训,以在灵活电子领域为美国的劳动力做出贡献。高中生的动手讲习班和针对代表性不足的研究生的指导课程也将成为该项目的一部分。技术:该计划的目的是改善全局部薄膜晶体管中的切换时间,并开发一种非线性光学方法来可视化Carrier Transport。使用低成本溶剂加工和激进聚合物铁电介质的偶极层的偶极层工程可能会对技术产生变革性的影响,在这些技术中,可以在长期可打印的薄膜有机薄膜有机场效应晶体晶体管和逻辑电路中实现快速切换时间。一系列新的侧链取代的供体 - 受体共聚物将用作活性半导体层。现场效应晶体管中有机半导体的载体迁移受到装置几何形状,有机半导体的物理/化学属性以及各种界面的强烈影响:金属 - 轴向导体和半导体仪器。将建立基于三阶敏感性的瞬态电场引起的第二谐波生成方法,从而可以直接和选择性探测场效应晶体管中动态载体运动。该技术将是一种可视化新一代捐赠者副型晶体管中传输的有力方法,并为预测准确的载流子迁移率(没有接触电阻问题和设备的几何因素)铺平了道路。来自晶体管体系结构中聚合物膜的放牧角X射线散射研究不仅揭示了聚合物的结构,而且还会揭示偏置应力时结构的变化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Correlating Charge Transport with Structure in Deconstructed Diketopyrrolopyrrole Oligomers: A Case Study of a Monomer in Field-Effect Transistors
解构二酮吡咯并吡咯低聚物中电荷传输与结构的关联:场效应晶体管中单体的案例研究
- DOI:10.1021/acsami.8b04711
- 发表时间:2018
- 期刊:
- 影响因子:9.5
- 作者:Pickett, Alec;Torkkeli, Mika;Mukhopadhyay, Tushita;Puttaraju, Boregowda;Laudari, Amrit;Lauritzen, Andreas E.;Bikondoa, Oier;Kjelstrup-Hansen, Jakob;Knaapila, Matti;Patil, Satish
- 通讯作者:Patil, Satish
UV–Ozone Modified Sol–Gel Processed ZnO for Improved Diketopyrrolopyrrole-Based Hybrid Photodetectors
- DOI:10.1021/acsaelm.9b00597
- 发表时间:2019-10
- 期刊:
- 影响因子:4.7
- 作者:Alec Pickett;A. A. Mohapatra-A.;Suman Ray;Qiangsheng Lu;G. Bian;K. Ghosh;S. Patil;S. Guha
- 通讯作者:Alec Pickett;A. A. Mohapatra-A.;Suman Ray;Qiangsheng Lu;G. Bian;K. Ghosh;S. Patil;S. Guha
Polarization Modulation in Ferroelectric Organic Field-Effect Transistors
- DOI:10.1103/physrevapplied.10.014011
- 发表时间:2018-03
- 期刊:
- 影响因子:4.6
- 作者:A. Laudari;A. Mazza;A. Daykin;S. Khanra;K. Ghosh;F. Cummings;T. Müller;P. Miceli;S. Guha
- 通讯作者:A. Laudari;A. Mazza;A. Daykin;S. Khanra;K. Ghosh;F. Cummings;T. Müller;P. Miceli;S. Guha
Polarization-induced transport in organic field-effect transistors: the role of ferroelectric dielectrics
有机场效应晶体管中的极化诱导传输:铁电介质的作用
- DOI:10.1117/12.2273232
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Laudari, Amrit;Guha, Suchi
- 通讯作者:Guha, Suchi
Enhanced piezoresponse and nonlinear optical properties of fluorinated self-assembled peptide nanotubes
- DOI:10.1063/1.5110562
- 发表时间:2019-11-01
- 期刊:
- 影响因子:1.6
- 作者:Khanra, Soma;Vassiliades, Sandra V.;Guha, Suchismita
- 通讯作者:Guha, Suchismita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suchismita Guha其他文献
MAPLE-deposited polymer films for improved organic device performance
枫树沉积聚合物薄膜可改善有机器件性能
- DOI:
10.1007/s00339-011-6596-5 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Suchismita Guha;D. Adil;N. Ukah;Ram K. Gupta;K. Ghosh - 通讯作者:
K. Ghosh
Suchismita Guha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suchismita Guha', 18)}}的其他基金
Textured organic ferroelectric-based transistors as neuromorphic devices
作为神经形态器件的纹理化有机铁电晶体管
- 批准号:
2324839 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
MsRI-EW: Precision Nanoscale Patterning and Characterization – From Cybernetic Proteins to Nanoengineered Quantum Devices
MsRI-EW:精密纳米级图案化和表征 - 从控制论蛋白质到纳米工程量子设备
- 批准号:
2034637 - 财政年份:2020
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
Tuning the Spin Texture in Organic-Inorganic Halide Perovskites
调整有机-无机卤化物钙钛矿的自旋纹理
- 批准号:
1807263 - 财政年份:2018
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
MRI: Acquisition of an ultrafast amplified laser system for nonlinear optics and time-resolved spectroscopic studies of condensed matter systems
MRI:获取用于非线性光学和凝聚态系统的时间分辨光谱研究的超快放大激光系统
- 批准号:
1827846 - 财政年份:2018
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
US-Brazil Workshop on Biosensors: Bioanalytics to Device Integration; November 8-10, 2017; Federal University of ABC, Santo Andre, Sao Paulo, Brazil
美国-巴西生物传感器研讨会:生物分析到设备集成;
- 批准号:
1745328 - 财政年份:2017
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
US-Brazil Collaboration: Peptide nanostructure-based organic electronics
美国-巴西合作:基于肽纳米结构的有机电子学
- 批准号:
1339011 - 财政年份:2013
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
Polarization induced transport in all-polymer field-effect transistors
全聚合物场效应晶体管中的极化诱导输运
- 批准号:
1305642 - 财政年份:2013
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
Light scattering studies of organic field-effect transistors
有机场效应晶体管的光散射研究
- 批准号:
0823563 - 财政年份:2008
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
Light Scattering Studies of Organic Semiconductor based Devices
有机半导体器件的光散射研究
- 批准号:
0523656 - 财政年份:2005
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
IMR: Acquisition of a Thin Film Deposition System for Organic/Inorganic Materials Research and Educational Training
IMR:购买用于有机/无机材料研究和教育培训的薄膜沉积系统
- 批准号:
0413601 - 财政年份:2004
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
相似国自然基金
神经元模型中混合模式振荡诱导机制的动力学研究
- 批准号:12302069
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
- 批准号:12304175
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
柔性钙钛矿室内光伏器件中“微-宏观”应力调谐及其载流子复合动力学研究
- 批准号:62305261
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
摇摆桥梁三维动力学行为及地震响应规律研究
- 批准号:52308494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
桃果实采后冷害质地劣变的细胞壁果胶动力学机制研究
- 批准号:32302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ignition and burn dynamics of fast ignition laser fusion under kilo-tesla-class magnetic field and its high efficiency
千特斯拉级磁场下快点火激光聚变点火燃烧动力学及其高效率
- 批准号:
23K03360 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The influence of fast-draining subglacial lakes on the hydrology and dynamics of the Greenland Ice Sheet
快速排水的冰下湖泊对格陵兰冰盖水文和动力学的影响
- 批准号:
NE/X000257/1 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Research Grant
Slow-fast dynamics and the speeding up of freshwater food webs
淡水食物网的慢速动态和加速
- 批准号:
557447-2021 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Postdoctoral Fellowships
SBIR Phase I: A Flexion-Based Computational Fluid Dynamics Tool for the Fast Computation of Turbulent Flow over Complex Geometries
SBIR 第一阶段:基于弯曲的计算流体动力学工具,用于快速计算复杂几何形状的湍流
- 批准号:
2133757 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant
Ultra-fast cerebral blood flow imaging for quantifying brain dynamics
用于量化大脑动态的超快速脑血流成像
- 批准号:
10481324 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别: