Designer Soft Microparticles for a Changing Environment

专为不断变化的环境而设计的软微粒

基本信息

  • 批准号:
    1708729
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical AbstractPolymeric particles and capsules with diameters of tens to hundreds of micrometers, similar to the size of a human hair, are extensively used for the encapsulation and protection of chemically or environmentally sensitive active molecules or nanoparticles, with uses, for example, for food and detergent additives, for cosmetics, as well as for drug delivery. During storage and delivery, the encapsulant protects the cargo, and releases it at the desired location, often through some external stimulus that breaks or degrades the encapsulant. Microcapsules, particles with thin shells and large hollow cores, are particularly valuable because only small amounts of encapsulant is needed to protect large amounts of the desired payload. In this project, novel microcapsules are developed with shells that release the capsule content reversibly in response to different external stimuli without shell destruction, leaving the capsule intact for reuse or repeated on-off switching of the release. These capsules are ideal for applications such as waste removal in water, where they can be opened to collect the waste, closed to remove it, and reopened to release the waste in appropriate storage containment. These capsules are obtained from complex emulsions, such as water-cored oil drops, that are fabricated using microfluidic devices with channel architectures of comparable size to the drops. This technology enables precise manufacturing of capsules with control over size, shell thickness, and composition with very low dispersity. The students involved in this project, both undergraduates and graduates, are trained in functional polymer synthesis, microfluidic technology, and materials characterization, giving them a broad set of tools that is indispensable for modern multidisciplinary research in materials science. Technical AbstractEncapsulation of chemically or environmentally sensitive active molecules or nanoparticles is crucial in numerous applications, from food additives, to detergents and drug delivery; traditionally sacrificial encapsulants are used in a one-time, one-way encapsulate-and-release design. A primary aim of this project is to develop and fabricate a new class of dynamic encapsulant systems based on functional polymer microcapsules that exhibit active and reversible interactions with their environment. Microfluidic devices are used to create well-defined multiple emulsion drops of immiscible fluids that form templates for soft encapsulation materials. The physics of the assembly of functional materials in complex emulsions, and the dynamic functionalities of the materials themselves, are investigated, as is the influence of liquid confinement on these processes and properties. An additional aim of the project is to investigate the interactions of these functional polymeric microcapsules with solutes, the environment, and external stimuli for responsive and selective permeability in and out of the capsule. Encapsulation systems with such responsive permeability enable the reversible, on-demand release of actives, and allow the replenishment of actives inside the capsules through triggered uptake and trapping of cargo. This research extends the application of such encapsulants from one-way delivery systems to utilization in purification and separation. An additional objective of this project is the development of designer porous media with controlled mechanical properties to study fundamental mechanisms of the behavior of porous media and multiphase flow within it. These model systems provide insight into processes that are widely practiced but not well understood, including the fracturing of porous media due to pressure shocks, and the effects of polymer solutions on multiphase fluid flow in porous media.
非技术摘要直径为数十至数百微米(类似于人类头发的大小)的聚合物颗粒和胶囊广泛用于封装和保护化学或环境敏感的活性分子或纳米颗粒,例如用于食品和洗涤剂添加剂、化妆品以及药物输送。在储存和运输过程中,密封剂保护货物,并通常通过一些破坏或降解密封剂的外部刺激将其释放到所需位置。微胶囊是具有薄壳和大空心的颗粒,特别有价值,因为只需要少量的密封剂即可保护大量所需的有效负载。在该项目中,开发了带有外壳的新型微胶囊,可响应不同的外部刺激可逆地释放胶囊内容物,而不会破坏外壳,使胶囊完好无损以供重复使用或重复开关释放。这些胶囊非常适合水中废物清除等应用,它们可以打开以收集废物,关闭以清除废物,然后重新打开以将废物释放到适当的存储容器中。这些胶囊是从复杂的乳液(例如水核油滴)中获得的,这些乳液是使用微流体装置制造的,其通道结构与液滴的尺寸相当。该技术能够精确制造胶囊,控制尺寸、壳厚度和分散度极低的成分。参与该项目的学生,无论是本科生还是研究生,都接受了功能聚合物合成、微流体技术和材料表征方面的培训,为他们提供了现代材料科学多学科研究不可或缺的广泛工具。技术摘要化学或环境敏感的活性分子或纳米颗粒的封装在许多应用中至关重要,从食品添加剂到洗涤剂和药物输送;传统上,牺牲密封剂用于一次性、单向封装和释放设计。该项目的主要目标是开发和制造基于功能聚合物微胶囊的新型动态封装系统,该系统与环境表现出主动且可逆的相互作用。微流体装置用于创建边界明确的不混溶流体的多个乳滴,形成软封装材料的模板。研究了复杂乳液中功能材料组装的物理原理以及材料本身的动态功能,以及液体限制对这些过程和性能的影响。该项目的另一个目的是研究这些功能性聚合物微胶囊与溶质、环境和外部刺激的相互作用,以实现胶囊进出的响应性和选择性渗透性。具有这种响应渗透性的封装系统能够实现活性物质的可逆、按需释放,并允许通过触发吸收和捕获货物来补充胶囊内的活性物质。这项研究将此类封装剂的应用从单向输送系统扩展到纯化和分离中的应用。该项目的另一个目标是开发具有受控机械性能的设计多孔介质,以研究多孔介质及其内多相流行为的基本机制。这些模型系统提供了对广泛实践但尚未充分理解的过程的深入了解,包括压力冲击导致的多孔介质破裂,以及聚合物溶液对多孔介质中多相流体流动的影响。

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels
  • DOI:
    10.1039/c9lc00656g
  • 发表时间:
    2019-12-21
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Lu, Haiwei;Mutafopulos, Kirk;Weitz, David A.
  • 通讯作者:
    Weitz, David A.
Hydrogel micromotors with catalyst-containing liquid core and shell
  • DOI:
    10.1088/1361-648x/ab0822
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong Zhu;S. Nawar;J. Werner;Jinrun Liu;Gaoshan Huang;Y. Mei;D. Weitz;A. Solovev
  • 通讯作者:
    Hong Zhu;S. Nawar;J. Werner;Jinrun Liu;Gaoshan Huang;Y. Mei;D. Weitz;A. Solovev
Hydrogel Microcapsules with Dynamic pH-Responsive Properties from Methacrylic Anhydride
  • DOI:
    10.1021/acs.macromol.8b00843
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    J. Werner;S. Nawar;A. Solovev;D. Weitz
  • 通讯作者:
    J. Werner;S. Nawar;A. Solovev;D. Weitz
Wetting controls of droplet formation in step emulsification
Surfactant Variations in Porous Media Localize Capillary Instabilities during Haines Jumps
  • DOI:
    10.1103/physrevlett.120.028005
  • 发表时间:
    2018-01-12
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Edery, Yaniv;Weitz, David;Berg, Steffen
  • 通讯作者:
    Berg, Steffen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Weitz其他文献

High Throughput Microfluidics Platform to Assess Synthetic Lethality and Novel Therapeutic Drug Combinations
  • DOI:
    10.1182/blood-2023-190651
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Anthony Soltis;Boryana Zhelyazkova;Pascal Drane;Efstathios Eleftheriadis;Andrew Ventresco;David Weitz;Anthony John Iafrate;Arlinda Lee
  • 通讯作者:
    Arlinda Lee
InjectableStem Cell-laden Photo-crosslinkable Microspheres Fabricated Using Microfluidicsfor Rapid Generation of Osteogenic Tissue Constructs
  • DOI:
    DOI: 10.1002/adfm.201504943
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
  • 作者:
    Xin Zhao;Shen Liu;Lara Yildirimer;Hong Zhao;Ruihua Ding;Huanan Wang;Wenguo Cui;David Weitz
  • 通讯作者:
    David Weitz
Caldesmon Stabilizes Nascent Actin Filaments and Promotes Branching by Arp2/3 Complex
  • DOI:
    10.1016/j.bpj.2011.11.2043
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Mikkel H. Jensen;Eliza J. Morris;Renjian Huang;Roberto Dominguez;David Weitz;Jeffrey R. Moore;Chih-Lueh Albert Wang
  • 通讯作者:
    Chih-Lueh Albert Wang
Fiber Dynamics during Strain Stiffening in Stiff Biopolymer Networks
  • DOI:
    10.1016/j.bpj.2008.12.2697
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Louise Jawerth;Stefan Münster;David Vader;David Weitz
  • 通讯作者:
    David Weitz
High-throughput, high-viability encapsulation of iPSCs and cerebral spheroids into hydrogel spheres using droplet microfluidics
  • DOI:
    10.1016/j.ibror.2019.07.433
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marco Malaga;John Heyman;Jesse Collins;Alison O’Neil;Qiaoling Huang;Yi Xiao;David Weitz
  • 通讯作者:
    David Weitz

David Weitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Weitz', 18)}}的其他基金

Collaborative Research: Droplet-based selection to improve aflatoxin detoxification
合作研究:基于液滴的选择改善黄曲霉毒素解毒
  • 批准号:
    2103538
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of fusion of dissimilar lipid bilayers and multi-lamellar vesicles
合作研究:不同脂质双层和多层囊泡的融合机制
  • 批准号:
    1705775
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Workshop on a Systematic Approach to Robustness, Reliability, and Reproducibility in Scientific Research February 24-26, 2017 in Atlanta, GA
关于科学研究稳健性、可靠性和可重复性的系统方法研讨会 2017 年 2 月 24-26 日在佐治亚州亚特兰大
  • 批准号:
    1650892
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Materials Research Science and Engineering Center
材料研究科学与工程中心
  • 批准号:
    1420570
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
    Cooperative Agreement
Soft Materials: Synthesis and Properties
软材料:合成与性能
  • 批准号:
    1310266
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Synthesis and Properties of Deformable Biomaterials and Soft Matter Systems
可变形生物材料和软物质系统的合成与性能
  • 批准号:
    1006546
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Materials Research Science and Engineering Center
材料研究科学与工程中心
  • 批准号:
    0820484
  • 财政年份:
    2008
  • 资助金额:
    $ 45万
  • 项目类别:
    Cooperative Agreement
Collaborative Proposal: Instrumental Development of Microfluidics-Based Fluorescence Activated Cell Sorting Device for Research and Education
合作提案:用于研究和教育的基于微流体的荧光激活细胞分选装置的仪器开发
  • 批准号:
    0649865
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Non-Equilibrium and Non-Linear Structure and Dynamics of Soft Materials
软材料的非平衡非线性结构与动力学
  • 批准号:
    0602684
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
The Fluid to Solid Transitions in Soft Materials
软材料中的流体到固体的转变
  • 批准号:
    0243715
  • 财政年份:
    2003
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似海外基金

I-Corps: Translation potential of stereolithography 3D printing to create soft elastomers
I-Corps:立体光刻 3D 打印制造软弹性体的转化潜力
  • 批准号:
    2414710
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
  • 批准号:
    2323917
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Reverse Design of Tuneable 4D Printed Materials for Soft Robotics
用于软体机器人的可调谐 4D 打印材料的逆向设计
  • 批准号:
    DE240100960
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Early Career Researcher Award
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    ARC Future Fellowships
Using soft X-ray coherent diffraction imaging to study and tailor the formation of superfluid helium droplets and quantum vortices within them
使用软 X 射线相干衍射成像来研究和定制超流氦液滴及其内部量子涡旋的形成
  • 批准号:
    23K28359
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Instrument Development: A lab-scale soft X-ray microscope for biological systems
仪器开发:用于生物系统的实验室规模软 X 射线显微镜
  • 批准号:
    EP/Z53108X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Princeton-Oxford-Cambridge Centre-to-Centre Collaboration on Soft Functional Energy Materials
普林斯顿-牛津-剑桥软功能能源材料中心间合作
  • 批准号:
    EP/Z531303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
  • 批准号:
    2338371
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Revolutionary Soft Surfboards - Advanced UK low carbon manufacturing for enhanced durability and 100% recyclability
革命性%20Soft%20冲浪板%20-%20Advanced%20UK%20low%20carbon%20制造%20for%20增强%20耐用性%20和%20100%%20可回收性
  • 批准号:
    10095272
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了