Analysis of stochastic partial differential equations with multiple scales

多尺度随机偏微分方程分析

基本信息

  • 批准号:
    1712934
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

In the description of complex systems, both deterministic and stochastic, it is usually important to be able to have a simplified model of those systems, in order to make their analysis more approachable. Usually, such a simplification is realized by looking at a smaller number of factors that are considered more relevant for the evolution of the system and by neglecting other factors that are considered less relevant. However, such an approximation, that can be effective on some given time interval, is not effective on longer time scales and the neglected factors turn out to play a fundamental role in the description of the systems' behavior. This research will analyze a large class of equations used in these models. These are highly complex equations and an understanding of them is crucial for a deeper understanding of the main features of the model and for a better effectiveness in applications. This research will develop new methods and techniques ranging over many fields of mathematics. Education and training will also be a major part of the project. The main goal of this research project is the analysis of limit theorems for stochastic partial differential equations having multiple scales. In particular, the PI will study some generalizations of the Smoluchowskii-Kramers approximation for systems with an infinite number of degrees of freedom and its long-time effects, as well as the validity of the averaging and the large deviation principle for some classes of stochastic partial differential equations (SPDEs). Specifically, the PI will try to understand what happens in the regime where the noise is weak and almost white in space. Moreover, she will study the convergence of SPDEs defined on narrow channels or describing stochastic incompressible viscous fluids in the whole space to a new class of SPDEs defined on graphs and open books. These asymptotic results will be important not only to provide a simplified description of some relevant multi-scale SPDEs that arise e.g. in the study of molecular motors and fluid dynamics, but also because at the limit they provide new interesting mathematical objects that are worthy of investigation. What characterizes and unifies this approach to all of these asymptotic problems is the effort to understand how they all interplay and interact one with the other.
在描述复杂系统时,无论是确定性的还是随机性的,通常重要的是能够有这些系统的简化模型,以便使它们的分析更接近。通常,这种简化是通过查看被认为与系统演化更相关的较少数量的因素,并忽略被认为不太相关的其他因素来实现的。然而,这样的近似,可以有效的一些给定的时间间隔,是不是有效的更长的时间尺度和被忽视的因素,在描述系统的行为中发挥了根本性的作用。本研究将分析这些模型中使用的一大类方程。这些都是非常复杂的方程,理解它们对于更深入地理解模型的主要特征和提高应用效率至关重要。这项研究将发展新的方法和技术,涉及许多数学领域。教育和培训也将是该项目的一个主要部分。本研究计画的主要目标是分析多重尺度随机偏微分方程的极限定理。特别是,PI将研究具有无限多个自由度的系统的Smoluchowskiii-Kramers逼近的一些概括及其长期影响,以及某些类型的平均和大偏差原理的有效性随机偏微分方程(SPDEs)。具体来说,PI将试图了解在噪声较弱且几乎为空间白色的情况下会发生什么。此外,她将研究收敛的SPDE定义在狭窄的通道或描述随机不可压缩粘性流体在整个空间中的一类新的SPDE定义的图形和开放的书籍。这些渐近结果将是重要的,不仅提供了一些相关的多尺度SPDE,例如,在分子马达和流体动力学的研究中出现的简化描述,但也因为在极限,他们提供了新的有趣的数学对象,是值得调查。对所有这些渐近问题的这种方法的特点和统一是努力理解它们如何相互作用和相互作用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large deviations for fast transport stochastic RDEs with applications to the exit problem
快速传输随机 RDE 的大偏差及其在出口问题中的应用
  • DOI:
    10.1214/18-aap1439
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cerrai, Sandra;Paskal, Nicholas
  • 通讯作者:
    Paskal, Nicholas
Schauder theorems for Ornstein-Uhlenbeck equations in infinite dimension
无限维 Ornstein-Uhlenbeck 方程的 Schauder 定理
  • DOI:
    10.1016/j.jde.2019.08.005
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Cerrai, Sandra;Lunardi, Alessandra
  • 通讯作者:
    Lunardi, Alessandra
An Averaging Approach to the Smoluchowski–Kramers Approximation in the Presence of a Varying Magnetic Field
  • DOI:
    10.1007/s10955-020-02570-8
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    S. Cerrai;J. Wehr;Yichun Zhu
  • 通讯作者:
    S. Cerrai;J. Wehr;Yichun Zhu
Large deviations for the two-dimensional stochastic Navier–Stokes equation with vanishing noise correlation
噪声相关性消失的二维随机纳维斯托克斯方程的大偏差
  • DOI:
    10.1214/17-aihp881
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cerrai, Sandra;Debussche, Arnaud
  • 通讯作者:
    Debussche, Arnaud
Averaging principle for non autonomous slow-fast systems of stochastic RDEs: the almost periodic case
  • DOI:
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Cerrai;A. Lunardi
  • 通讯作者:
    S. Cerrai;A. Lunardi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandra Cerrai其他文献

Pathwise uniqueness for stochastic reaction-diffusion equations in Banach spaces with an Hölder drift component
Schauder estimates for a degenerate second order elliptic operator on a cube
  • DOI:
    10.1016/j.jde.2007.08.002
  • 发表时间:
    2007-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sandra Cerrai;Philippe Clément
  • 通讯作者:
    Philippe Clément
A Hille-Yosida theorem for weakly continuous semigroups
  • DOI:
    10.1007/bf02573496
  • 发表时间:
    1994-12-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Sandra Cerrai
  • 通讯作者:
    Sandra Cerrai
Nonlinear random perturbations of PDEs and quasi-linear equations in Hilbert spaces depending on a small parameter
希尔伯特空间中依赖于小参数的偏微分方程和拟线性方程的非线性随机摄动
  • DOI:
    10.1016/j.jfa.2024.110418
  • 发表时间:
    2024-06-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Sandra Cerrai;Giuseppina Guatteri;Gianmario Tessitore
  • 通讯作者:
    Gianmario Tessitore
On a class of degenerate elliptic operators arising from Fleming-Viot processes
  • DOI:
    10.1007/pl00001370
  • 发表时间:
    2001-09-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Sandra Cerrai;Philippe Clément
  • 通讯作者:
    Philippe Clément

Sandra Cerrai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandra Cerrai', 18)}}的其他基金

Multiscale Analysis of Infinite-Dimensional Stochastic Systems
无限维随机系统的多尺度分析
  • 批准号:
    1954299
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Seminar on Stochastic Processes 2016
2016年随机过程研讨会
  • 批准号:
    1550644
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
  • 批准号:
    1407615
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
  • 批准号:
    0907295
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于随机模型检测的网络脆弱性分析研究
  • 批准号:
    60573144
  • 批准年份:
    2005
  • 资助金额:
    5.0 万元
  • 项目类别:
    面上项目
二阶段随机优化的并行方法
  • 批准号:
    10161002
  • 批准年份:
    2001
  • 资助金额:
    4.5 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
  • 批准号:
    2245242
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
  • 批准号:
    1855185
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
  • 批准号:
    1855439
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Analysis of Partial Differential Equations with Cross-Diffusion and Stochastic Driving
具有交叉扩散和随机驱动的偏微分方程分析
  • 批准号:
    370099393
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grants
Analysis of Partial Differential Equations Arising in Population Genetics and Singular Stochastic Control
群体遗传学与奇异随机控制中的偏微分方程分析
  • 批准号:
    1714490
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
  • 批准号:
    1733909
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Stochastic Analysis and its applications to partial differential operators
随机分析及其在偏微分算子中的应用
  • 批准号:
    26400144
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
  • 批准号:
    1313272
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Analysis of Stochastic Partial Differential Equations
NSF/CBMS 数学科学区域会议 - 随机偏微分方程分析
  • 批准号:
    1241389
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了