EAPSI: Computational Screening of Metal Alloys for the Electrochemical Reduction of CO2 to Fuels
EAPSI:用于将二氧化碳电化学还原为燃料的金属合金的计算筛选
基本信息
- 批准号:1713994
- 负责人:
- 金额:$ 0.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Discovering an efficient and selective catalyst for CO2 reduction to fuels is an important step towards sustainable energy production, for the benefits of reinforcing national energy independence and allowing the integration of renewable energy sources to current energy infrastructures. In this study rigorous quantum mechanical calculations will be employed to screen for CO2 reduction catalysts in metal alloys. The research will be conducted in collaboration with Dr. Haibin Su, a noted expert on modeling chemical reactions in nanoparticle systems, at Nanyang Technological University in Singapore. Currently, copper is the only known electrocatalyst that reduce CO2 beyond 2-electron reduction. However, neither efficiency nor selectivity are sufficient for industrial scale application. In this study, CO2 reduction materials will be screened under specific pH and applied potentials. Formate forming metals will be chosen as the host substrate and one of the surface metal atom will be replaced by a different metal atom to form single-atom alloys (SAA) for targeted reactions. For the purpose of high efficiency, moderately applied potentials are required. At such a potential range, formate forming metals will not produce undesired by-products like hydrogen gas and CO, thus providing adsorbed hydrogen atoms to activate CO2. By using different transition metals at the single metal atom site, the activity as well as the selectivity towards CO2 reduction can be optimized. To determine the stability of the metal alloy, metal-metal interactions will be evaluated in collaboration with Dr. Su. This award, under the East Asia and Pacific Summer Institutes program, supports summer research by a U.S. graduate student is jointly funded by NSF and the National Research Foundation of Singapore.
发现一种有效和有选择性的催化剂,将二氧化碳还原为燃料,是实现可持续能源生产的重要一步,有利于加强国家能源独立,并使可再生能源与现有能源基础设施相结合。在这项研究中,严格的量子力学计算将被用来筛选金属合金中的CO2还原催化剂。这项研究将与新加坡南洋理工大学的著名纳米颗粒系统化学反应建模专家苏海滨博士合作进行。目前,铜是唯一已知的还原CO2超过2电子还原的电催化剂。 然而,效率和选择性都不足以用于工业规模应用。在本研究中,CO2还原材料将在特定的pH值和外加电位下进行筛选。甲酸盐形成金属将被选择作为主体基底,并且表面金属原子之一将被不同的金属原子取代以形成用于靶向反应的单原子合金(SAA)。为了达到高效率的目的,需要适度地施加电势。在这样的电势范围下,形成甲酸盐的金属将不会产生不期望的副产物如氢气和CO,从而提供吸附的氢原子以活化CO2。通过在单个金属原子位点使用不同的过渡金属,可以优化对CO2还原的活性以及选择性。为了确定金属合金的稳定性,将与苏博士合作评估金属-金属相互作用。该奖项是在东亚和太平洋夏季研究所计划下,由NSF和新加坡国家研究基金会共同资助,支持美国研究生的夏季研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufeng Huang其他文献
Consumption at old age and life time labor supply in rural China
中国农村老年消费与终身劳动力供给
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yufeng Huang;T. Klein - 通讯作者:
T. Klein
Unusual aberration involving the short arm of chromosome 11 in an 8-month-old patient with a supratentorial primitive neuroectodermal tumor.
一名患有幕上原始神经外胚层肿瘤的 8 个月大患者的 11 号染色体短臂异常畸变。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
J. Batanian;N. Havlioglu;Yufeng Huang;B. Gadre - 通讯作者:
B. Gadre
Comparison of histological characteristics and expression of CD3 and CD79a among the hemal nodes, lymph nodes and spleens of yaks (Bos grunniens)
牦牛血管淋巴结、淋巴结和脾脏组织学特征及CD3和CD79a表达比较
- DOI:
10.14670/hh-18-030 - 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
Yufeng Huang;Yan Cui;Sijiu Yu;Junfeng He;Yanyu He - 通讯作者:
Yanyu He
A novel STS mutation and an Xp22.31 microdeletion in a Chinese family with X-linked ichthyosis
中国 X 连锁鱼鳞病家系中的新 STS 突变和 Xp22.31 微缺失
- DOI:
10.1111/ced.14525 - 发表时间:
2020 - 期刊:
- 影响因子:4.1
- 作者:
Yufeng Huang;Sukun Luo;Peiwei Zhao;Li Tan;Guili Fu;Aifen Zhou;Xuelian He - 通讯作者:
Xuelian He
Exogenous advanced glycosylation end products induce diabetes-like vascular dysfunction in normal rats: a factor in diabetic retinopathy
外源性高级糖基化终产物在正常大鼠中诱导糖尿病样血管功能障碍:糖尿病视网膜病变的一个因素
- DOI:
10.1007/s00417-002-0575-7 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Xun Xu;Zhiping Li;Dawei Luo;Yufeng Huang;Jianfeng Zhu;Xiaojue Wang;Hong;C. Patrick - 通讯作者:
C. Patrick
Yufeng Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 0.54万 - 项目类别:
Continuing Grant
Computational high throughput screening methods and data driven materials design
计算高通量筛选方法和数据驱动的材料设计
- 批准号:
RGPIN-2019-06867 - 财政年份:2022
- 资助金额:
$ 0.54万 - 项目类别:
Discovery Grants Program - Individual
High throughput computational mass screening to identify cost-effective, sustainable, next-generation magnet materials for net zero applications
高通量计算质量筛选,以确定用于净零应用的经济高效、可持续的下一代磁性材料
- 批准号:
10045433 - 财政年份:2022
- 资助金额:
$ 0.54万 - 项目类别:
Grant for R&D
Accelerated Discovery of Functional Tetramine-based Metal-Organic Cages using High-throughput Computational Screening Methods
使用高通量计算筛选方法加速发现功能性四胺基金属有机笼
- 批准号:
2751538 - 财政年份:2022
- 资助金额:
$ 0.54万 - 项目类别:
Studentship
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2118953 - 财政年份:2021
- 资助金额:
$ 0.54万 - 项目类别:
Continuing Grant
Computational high throughput screening methods and data driven materials design
计算高通量筛选方法和数据驱动的材料设计
- 批准号:
RGPIN-2019-06867 - 财政年份:2021
- 资助金额:
$ 0.54万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119299 - 财政年份:2021
- 资助金额:
$ 0.54万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119331 - 财政年份:2021
- 资助金额:
$ 0.54万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119340 - 财政年份:2021
- 资助金额:
$ 0.54万 - 项目类别:
Continuing Grant
Combined Computational and Cardiac Microphysiological System Approach for Drug-Induced Proarrhythmia Screening
计算和心脏微生理学系统相结合的药物诱发心律失常筛查方法
- 批准号:
10081415 - 财政年份:2020
- 资助金额:
$ 0.54万 - 项目类别:














{{item.name}}会员




