CSR: EAGER: Quality-of-Experience-Aware Runtime Optimizations for Heterogeneous Multi-Core Systems
CSR:EAGER:异构多核系统的体验质量感知运行时优化
基本信息
- 批准号:1718033
- 负责人:
- 金额:$ 27.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Given the pervasion of consumer devices in diverse operating environments, with a myriad of heterogeneous device resources and applications, designers can no longer pre-define optimization goals (e.g., maximum performance, minimum energy, Pareto optimal tradeoff, etc.) given extremely diverse end-user quality-of-experience (QoE) expectations (e.g., expected user-touch input response time, global positioning system (GPS) accuracy, video playback quality, battery life, etc.). To customize device operation, users typically can only select high-level system settings (e.g., screen brightness, power saving modes, etc.). This coarse-grained method ignores fine-grained configurable parameters with high QoE adherence potential.In this project, we will explore adapting fine-grained configurable parameters, ranging from cache configuration and pipeline issue width, to more efficient task scheduling in heterogeneous multicore systems, to use of different algorithm/process variations trading off reduced accuracy for increased battery life. Since allowing users to specify this level of device configurability is impractical, future devices must contain an automated runtime optimizer with functionality, architecture, and methods to change the device configuration to rapidly and accurately adapt, predict, and adhere to user QoE expectations.
鉴于消费者设备在不同操作环境中的普及,以及无数异构设备资源和应用程序,设计人员无法再预先定义优化目标(例如,最大性能,最小能量,帕累托最优权衡等),因为终端用户体验质量(QoE)期望极其多样化(例如,预期的用户触摸输入响应时间,全球定位系统(GPS)精度,视频播放质量,电池寿命等)。要自定义设备操作,用户通常只能选择高级系统设置(例如,屏幕亮度,省电模式等)。这种粗粒度方法忽略了具有高QoE粘附潜力的细粒度可配置参数。在这个项目中,我们将探索适应细粒度的可配置参数,从缓存配置和管道问题宽度,到异构多核系统中更有效的任务调度,以及使用不同的算法/进程变化来权衡降低的准确性以增加电池寿命。由于允许用户指定这种级别的设备可配置性是不切实际的,未来的设备必须包含一个自动化的运行时优化器,其功能、体系结构和方法可以更改设备配置,以快速准确地适应、预测和坚持用户的QoE期望。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Offloading cache configuration prediction to an FPGA for hardware speedup and overhead reduction: work-in-progress
- DOI:10.1145/3349567.3351730
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Ruben Vazquez;A. Gordon-Ross;G. Stitt
- 通讯作者:Ruben Vazquez;A. Gordon-Ross;G. Stitt
PANDORA: a parallelizing approximation-discovery framework (WIP paper)
PANDORA:并行近似发现框架(WIP 论文)
- DOI:10.1145/3316482.3326345
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Stitt, Greg;Campbell, David
- 通讯作者:Campbell, David
Realizing Closed-Loop, Online Tuning and Control for Configurable-Cache Embedded Systems: Progress and Challenges
实现可配置缓存嵌入式系统的闭环在线调节和控制:进展与挑战
- DOI:10.1109/isvlsi.2018.00136
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Badreldin, Islam;Gordon-Ross, Ann;Adegbija, Tosiron;Alsafrjalaniz, Mohamad Hammam
- 通讯作者:Alsafrjalaniz, Mohamad Hammam
Work-in-Progress: Toward a Robust, Reconfigurable Hardware Accelerator for Tree-Based Genetic Programming
正在进行的工作:为基于树的遗传编程打造一个强大的、可重新配置的硬件加速器
- DOI:10.1109/cases55004.2022.00015
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Crary, Christopher;Piard, Wesley;Chesley, Britton;Stitt, Greg
- 通讯作者:Stitt, Greg
Machine Learning-based Prediction for Dynamic, Runtime Architectural Optimizations of Embedded Systems
基于机器学习的嵌入式系统动态运行时架构优化预测
- DOI:10.1109/norchip.2019.8906901
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Vazquez, Ruben;Gordon-Ross, Ann;Stitt, Greg
- 通讯作者:Stitt, Greg
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ann Ramirez其他文献
Ann Ramirez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ann Ramirez', 18)}}的其他基金
CAREER: A Self-Tuning Cache Architecture for Multi-Core Systems
职业:多核系统的自调整缓存架构
- 批准号:
0953447 - 财政年份:2010
- 资助金额:
$ 27.84万 - 项目类别:
Continuing Grant
Collaborative Research: CSR-EHCS, SM: DPOP - A Dynamic Profiling and Optimization Platform for Sensor-Based Networks
合作研究:CSR-EHCS、SM:DPOP - 基于传感器的网络的动态分析和优化平台
- 批准号:
0834080 - 财政年份:2008
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems
合作研究:EAGER:SAI:高度分散的水基础设施系统水质监测的参与式设计
- 批准号:
2120829 - 财政年份:2022
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems
合作研究:EAGER:SAI:高度分散的水基础设施系统水质监测的参与式设计
- 批准号:
2121986 - 财政年份:2022
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems
合作研究:EAGER:SAI:高度分散的水基础设施系统水质监测的参与式设计
- 批准号:
2121991 - 财政年份:2022
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems
合作研究:EAGER:SAI:高度分散的水基础设施系统水质监测的参与式设计
- 批准号:
2308573 - 财政年份:2022
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
EAGER: Improving the Data Quality of Measurements Collected with Drone-Mounted Sensors: A Fluid Dynamics Perspective with Guidelines for Optimum Sensor Placement and Housing
EAGER:提高无人机安装传感器收集的测量数据质量:流体动力学视角以及最佳传感器放置和外壳指南
- 批准号:
2125997 - 财政年份:2021
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
EAGER: Improving the Quality and Reducing the Burden of Producing and Reusing Publicly Accessible Research Data
EAGER:提高可公开访问的研究数据的质量并减轻其负担
- 批准号:
2039677 - 财政年份:2020
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
EAGER: Live Reality: Sustainable and Up-to-Date Information Quality in Live Social Media through Continuous Evidence-Based Knowledge Acquisition
EAGER:实时现实:通过持续的循证知识获取,实时社交媒体中可持续且最新的信息质量
- 批准号:
2039653 - 财政年份:2020
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Fair and Accurate Information Quality Assessment Algorithm
EAGER:SaTC:早期跨学科合作:公平准确的信息质量评估算法
- 批准号:
1915790 - 财政年份:2019
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
EAGER: PPER: Development of a Contest-based Crowdsourcing Scheme for Public Water Quality Monitoring
EAGER:PPER:开发基于竞赛的公共水质监测众包计划
- 批准号:
1743997 - 财政年份:2018
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant
EAGER: CITIZEN SCIENCE BASED WATER QUALITY MONITORING IN UTAH LAKE
渴望:基于公民科学的犹他湖水质监测
- 批准号:
1743412 - 财政年份:2017
- 资助金额:
$ 27.84万 - 项目类别:
Standard Grant