Algorithm Development, Analysis, and Application of High Order Schemes
高阶方案的算法开发、分析与应用
基本信息
- 批准号:1719410
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project the PI will perform research in algorithm design and analysis of high order accurate and efficient numerical methods for solving partial differential equations. These algorithms are used to solve scientific and engineering problems arising from diverse application fields such as aerospace engineering, semi-conductor device design, astrophysics, and biological problems. Even with today's fast computers, it is still essential to design efficient and reliable algorithms which can be used to obtain accurate solutions to these application problems. The broader impacts resulting from the proposed activity will be a suite of powerful computational tools, suitable for various applications mentioned above. These tools are expected to make positive contributions to computer simulations of the complicated solution structure in these applications.The algorithms the PI plans to investigate include the finite difference and finite volume weighted essentially non-oscillatory (WENO) schemes and discontinuous Galerkin finite element methods, for solving hyperbolic and other convection dominated partial differential equations (PDEs). While the emphasis of this project is on algorithm design and analysis, close attention will be paid to applications. Topics of proposed investigations will include the study on an inverse Lax-Wendroff procedure for high order numerical boundary conditions for finite difference schemes on Cartesian meshes solving problems in general geometry, Lagrangian type finite volume schemes for multi-material flows, a simple weighted essentially non-oscillatory limiter for discontinuous Galerkin methods with strong shocks, high order stable conservative methods on arbitrary point clouds, discontinuous Galerkin methods for weakly coupled hyperbolic multi-domain and network problems, efficient time-stepping techniques for discontinuous Galerkin schemes, high order accurate bound-preserving schemes and applications, bound-preserving high order discontinuous Galerkin schemes for radiative transfer equations, energy-conserving DG methods for Maxwell's equations in Drude metamaterials, efficient discontinuous Galerkin method for front propagation problems with obstacles, superconvergence analysis of discontinuous Galerkin methods and its applications, multi-scale methods based on the discontinuous Galerkin framework, and applications in areas including traffic and pedestrian flow models and aggregation, coordinated movement and cell proliferation in computational biology. Problems in applications will motivate the design of new algorithms or new features in existing algorithms; mathematics tools are used to analyze these algorithms to give guidelines for their applicability and limitations; practical considerations including parallel implementation issues are addressed to make the algorithms competitive in large scale calculations; and collaborations with engineers and other applied scientists enable the efficient application of these new algorithms or new features in existing algorithms.
在这个项目中,PI将研究求解偏微分方程的高阶精确和高效数值方法的算法设计和分析。这些算法用于解决来自不同应用领域的科学和工程问题,如航空航天工程、半导体器件设计、天体物理学和生物学问题。即使在今天的快速计算机,它仍然是必不可少的设计高效可靠的算法,可以用来获得准确的解决这些应用问题。拟议的活动所产生的更广泛的影响将是一套强大的计算工具,适用于上述各种应用。这些工具有望为这些应用中复杂解结构的计算机模拟做出积极贡献。PI计划研究的算法包括有限差分和有限体积加权基本非振荡(WENO)格式和不连续Galerkin有限元方法,用于求解双曲型和其他对流主导的偏微分方程(PDEs)。本项目的重点是算法设计和分析,同时也会密切关注应用。提出的研究主题将包括研究笛卡尔网格有限差分格式的高阶数值边界条件的反Lax-Wendroff过程,解决一般几何问题,多物质流动的拉格朗日型有限体积格式,具有强激波的不连续Galerkin方法的简单加权本质非振荡限制器,任意点云的高阶稳定保守方法,弱耦合双曲型多域和网络问题的间断Galerkin方法,间断Galerkin格式的高效时间步进技术,高阶精确保界格式及其应用,辐射传递方程的保界高阶间断Galerkin格式,Drude超材料中Maxwell方程的节能DG方法,带障碍物前传播问题的高效间断Galerkin方法,非连续Galerkin方法的超收敛分析及其应用,基于非连续Galerkin框架的多尺度方法,以及计算生物学中交通和行人流模型与聚集、协调运动和细胞增殖等领域的应用。应用中的问题会激发新算法的设计或现有算法的新特性;使用数学工具对这些算法进行分析,给出它们的适用性和局限性的指导;实际考虑包括并行实现问题,以使算法在大规模计算中具有竞争力;与工程师和其他应用科学家的合作能够有效地应用这些新算法或现有算法中的新功能。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On New Strategies to Control the Accuracy of WENO Algorithm Close to Discontinuities II: Cell Averages and Multiresolution
控制 WENO 算法接近不连续精度的新策略 II:单元平均和多分辨率
- DOI:10.4208/jcm.1903-m2019-0125
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:sci, Sergio Amat
- 通讯作者:sci, Sergio Amat
High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes
三角形网格上具有新型多分辨率 WENO 限制器的高阶 Runge-Kutta 不连续 Galerkin 方法
- DOI:10.1016/j.apnum.2020.03.013
- 发表时间:2020
- 期刊:
- 影响因子:2.8
- 作者:Zhu Jun;Shu Chi-Wang;Qiu Jianxian
- 通讯作者:Qiu Jianxian
A Third-Order Unconditionally Positivity-Preserving Scheme for Production–Destruction Equations with Applications to Non-equilibrium Flows
- DOI:10.1007/s10915-018-0881-9
- 发表时间:2018-11
- 期刊:
- 影响因子:2.5
- 作者:Juntao Huang;Weifeng Zhao;C. Shu
- 通讯作者:Juntao Huang;Weifeng Zhao;C. Shu
Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations
- DOI:10.1007/s00211-021-01209-4
- 发表时间:2020-02
- 期刊:
- 影响因子:2.1
- 作者:Kailiang Wu;Chi-Wang Shu
- 通讯作者:Kailiang Wu;Chi-Wang Shu
On a class of splines free of Gibbs phenomenon
一类无吉布斯现象的样条
- DOI:10.1051/m2an/2020021
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Amat, Sergio;Ruiz, Juan;Shu, Chi-Wang;Trillo, Juan Carlos
- 通讯作者:Trillo, Juan Carlos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chi-Wang Shu其他文献
Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes
用加权紧致非线性格式改进欧拉方程稳态解的收敛性
- DOI:
10.1007/s10255-013-0230-6 - 发表时间:
2013-07 - 期刊:
- 影响因子:0
- 作者:
Shuhai Zhang, Meiliang Mao;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Stability of high order finite difference schemes with implicit-explicit time-marching for convection-diffusion and convection-dispersion equations
对流扩散和对流色散方程隐式-显式时间推进高阶有限差分格式的稳定性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.1
- 作者:
Meiqi Tan;Juan Cheng;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
A high order positivity-preserving polynomial projection remapping method
一种高阶保正多项式投影重映射方法
- DOI:
10.1016/j.jcp.2022.111826 - 发表时间:
2023-02 - 期刊:
- 影响因子:4.1
- 作者:
Nuo Lei;Juan Cheng;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Optimal error estimates to smooth solutions of the central discontinuous Galerkin methods for nonlinear scalar conservation laws
- DOI:
10.1051/m2an/2022037 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Mengjiao Jiao;Yan Jiang;Chi-Wang Shu;Mengping Zhang - 通讯作者:
Mengping Zhang
Numerical experiments on the accuracy of ENO and modified ENO schemes
- DOI:
10.1007/bf01065581 - 发表时间:
1990-06 - 期刊:
- 影响因子:2.5
- 作者:
Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Chi-Wang Shu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chi-Wang Shu', 18)}}的其他基金
High Order Schemes: Bound Preserving, Moving Boundary, Stochastic Effects and Efficient Time Discretization
高阶方案:保界、移动边界、随机效应和高效时间离散化
- 批准号:
2309249 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
High Order Schemes: Robustness, Efficiency, and Stochastic Effects
高阶方案:鲁棒性、效率和随机效应
- 批准号:
2010107 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
High Order Schemes for Hyperbolic and Convection-dominated Problems
双曲和对流主导问题的高阶方案
- 批准号:
1418750 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Algorithm Design and Analysis for High Order Numerical Methods
高阶数值方法的算法设计与分析
- 批准号:
1112700 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SCREMS: High order numerical algorithms and their applications
SCEMS:高阶数值算法及其应用
- 批准号:
0922803 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
International Conference on Advances in Scientific Computing; December 2009; Providence, RI
国际科学计算进展会议;
- 批准号:
0940863 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Efficient High Order Numerical Methods for Convection Dominated Partial Differential
对流主导偏微分的高效高阶数值方法
- 批准号:
0809086 - 财政年份:2008
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: High Order Accurate Weighted Essentially Non-Oscillatory Algorithms with Applications to Cosmological Hydrodynamic Simulations
合作研究:高阶精确加权本质非振荡算法及其在宇宙流体动力学模拟中的应用
- 批准号:
0506734 - 财政年份:2005
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
High Order Numerical Methods for Wave Phenomena in Adaptive, Multiscale and Uncertain Environments
自适应、多尺度和不确定环境中波动现象的高阶数值方法
- 批准号:
0510345 - 财政年份:2005
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
High Order Methods for Linear and Nonlinear Waves
线性和非线性波的高阶方法
- 批准号:
0207451 - 财政年份:2002
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of "ultra" large displacement dynamic analysis algorithm using machine learning
利用机器学习开发“超”大位移动态分析算法
- 批准号:
23K04007 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Intracranial EEG Analysis Algorithm to Improve Surgical Outcomes in Drug-Resistant Epilepsy
开发颅内脑电图分析算法以改善耐药性癫痫的手术结果
- 批准号:
22K09296 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of treatment algorithm using musculoskeletal model analysis and AI technology in knee joint osteoarthritis
利用肌肉骨骼模型分析和人工智能技术开发膝关节骨关节炎治疗算法
- 批准号:
22K21258 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Algorithm development and cost-effectiveness analysis to optimize comprehensive environmental support for older adults
算法开发和成本效益分析,以优化老年人的综合环境支持
- 批准号:
22K10391 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A biopsychosocial functioning library based on user needs analysis algorithm for efficient development of assistive technologies
基于用户需求分析算法的生物心理社会功能库,用于辅助技术的高效开发
- 批准号:
21H03859 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Bioinformatic algorithm and infrastructure development for post-translational modification analysis
职业:翻译后修饰分析的生物信息学算法和基础设施开发
- 批准号:
2046122 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Data Analysis and Algorithm Development to Optimize Energy Storage Installation Size
数据分析和算法开发以优化储能安装规模
- 批准号:
560202-2020 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Applied Research and Development Grants - Level 1
Exploration of novel therapeutic targets for renal cancer by multi-omics analysis and development of treatment algorithm
通过多组学分析探索肾癌新治疗靶点并开发治疗算法
- 批准号:
19K09728 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an algorithm for determining the location of homologous recombination sites from NGS data and analysis of the relationship with genetic information
开发从NGS数据确定同源重组位点位置的算法并分析与遗传信息的关系
- 批准号:
19H03206 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a diagnostic algorithm through gene panel testing and genetic risk score analysis to facilitate precision medicine for diabetes
通过基因组测试和遗传风险评分分析开发诊断算法,以促进糖尿病的精准医疗
- 批准号:
19K16534 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists