High Order Schemes for Hyperbolic and Convection-dominated Problems

双曲和对流主导问题的高阶方案

基本信息

  • 批准号:
    1418750
  • 负责人:
  • 金额:
    $ 38.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

In this project, the PI will perform research in the algorithm design and analysis of high order numerical methods. These algorithms are used to solve scientific and engineering problems arising from diverse application fields such as aerospace engineering, semi-conductor device design, astrophysics, and biological problems. Even with today's fast computers, it is still essential to design efficient and reliable algorithms which can be used to obtain accurate solutions to these application problems. The broader impacts resulting from the proposed activity will be a suite of powerful computational tools, suitable for various applications mentioned above. These tools are expected to make positive contributions to computer simulations of the complicated solution structure in these applications. The algorithms to be investigated include the finite difference and finite volume weighted essentially non-oscillatory (WENO) schemes and discontinuous Galerkin finite element methods, for solving hyperbolic and other convection dominated partial differential equations (PDEs). While the emphasis of this project is on algorithm design and analysis, close attention will be paid to applications. Topics of proposed investigations will include the study on high order accurate bound-preserving algorithms and applications, an inverse Lax-Wendroff procedure for high order numerical boundary conditions for finite difference schemes on rectangular meshes when the physical boundary is not aligned with the meshes, WENO schemes with subcell resolution for nonconservative problems, Lagrangian type finite volume schemes for multi-material flows, energy-conserving discontinuous Galerkin methods for long time simulation of wave problems, efficient discontinuous Galerkin methods for front propagation problems with obstacles, superconvergence analysis of discontinuous Galerkin methods and its applications in adaptive computation, simple WENO limiters for discontinuous Galerkin methods in unstructured meshes for problems with strong shocks, multi-scale methods based on the discontinuous Galerkin framework, analysis and numerical solutions for traffic and pedestrian flow models, turbulence simulation in cosmology, and study on aggregation and coordinated movement in computational biology. Problems in applications will motivate the design of new algorithms or new features in existing algorithms; mathematics tools are used to analyze these algorithms to give guidelines for their applicability and limitations; practical considerations including parallel implementation issues are addressed to make the algorithms competitive in large scale calculations; and collaborations with engineers and other applied scientists enable the efficient application of these new algorithms or new features in existing algorithms.
在该项目中,PI将对高阶数值方法的算法设计和分析进行研究。 这些算法用于解决由航空航天工程,半导体设备设计,天体物理学和生物学问题等不同应用领域引起的科学和工程问题。 即使使用当今的快速计算机,设计有效可靠的算法仍然至关重要,这些算法可用于获得这些应用问题的准确解决方案。 拟议活动所产生的更广泛的影响将是一套强大的计算工具,适用于上述各种应用程序。 预计这些工具将为这些应用程序中复杂解决方案结构的计算机模拟做出积极贡献。要研究的算法包括有限的差异和有限体重加权基本上非振荡(WENO)方案以及不连续的Galerkin有限元方法,用于求解双曲线和其他对流主导的部分偏微分方程(PDES)。尽管该项目的重点是算法设计和分析,但将密切关注应用程序。 Topics of proposed investigations will include the study on high order accurate bound-preserving algorithms and applications, an inverse Lax-Wendroff procedure for high order numerical boundary conditions for finite difference schemes on rectangular meshes when the physical boundary is not aligned with the meshes, WENO schemes with subcell resolution for nonconservative problems, Lagrangian type finite volume schemes for multi-material长时间的不连续盖尔金方法,用于长期模拟波浪问题的流量,有效的不连续的盖尔金方法,用于障碍物的前传繁殖问题,对不连续的Galerkin方法的超授权分析及其在自适应计算中的应用,其在自适应计算中的应用,在不连续的Galerkin shess中的简单限制器,用于不连续的Galerkin shess中的问题,用于不连续的Galerke Meshes,用于远程销售方法,以构建不连续的梅塞斯,用于构建杂物,以实现不连续的梅什群岛。不连续的Galerkin框架,用于交通和行人流量模型的分析和数值解决方案,宇宙学中的湍流模拟以及计算生物学中的聚集和协调运动的研究。 应用中的问题将激发新算法或现有算法中的新功能的设计;数学工具用于分析这些算法,以提供有关其适用性和局限性的准则;解决了包括并行实施问题在内的实际考虑因素,以使算法在大规模计算中具有竞争力;以及与工程师和其他应用科学家的合作,可以在现有算法中有效地应用这些新算法或新功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chi-Wang Shu其他文献

Numerical experiments on the accuracy of ENO and modified ENO schemes
Front tracking algorithm for the Lighthill-Whitham-Richards traffic flow model with a piecewise quadratic, continuous, non-smooth, and non-concave fundamental diagram
具有分段二次、连续、非光滑、非凹基本图的 Lighthill-Whitham-Richards 交通流模型的前方跟踪算法
A high order positivity-preserving polynomial projection remapping method
一种高阶保正多项式投影重映射方法
  • DOI:
    10.1016/j.jcp.2022.111826
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Nuo Lei;Juan Cheng;Chi-Wang Shu
  • 通讯作者:
    Chi-Wang Shu
Stability of high order finite difference schemes with implicit-explicit time-marching for convection-diffusion and convection-dispersion equations
对流扩散和对流色散方程隐式-显式时间推进高阶有限差分格式的稳定性
Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes
用加权紧致非线性格式改进欧拉方程稳态解的收敛性
  • DOI:
    10.1007/s10255-013-0230-6
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuhai Zhang, Meiliang Mao;Chi-Wang Shu
  • 通讯作者:
    Chi-Wang Shu

Chi-Wang Shu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chi-Wang Shu', 18)}}的其他基金

High Order Schemes: Bound Preserving, Moving Boundary, Stochastic Effects and Efficient Time Discretization
高阶方案:保界、移动边界、随机效应和高效时间离散化
  • 批准号:
    2309249
  • 财政年份:
    2023
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
High Order Schemes: Robustness, Efficiency, and Stochastic Effects
高阶方案:鲁棒性、效率和随机效应
  • 批准号:
    2010107
  • 财政年份:
    2020
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Algorithm Development, Analysis, and Application of High Order Schemes
高阶方案的算法开发、分析与应用
  • 批准号:
    1719410
  • 财政年份:
    2017
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Algorithm Design and Analysis for High Order Numerical Methods
高阶数值方法的算法设计与分析
  • 批准号:
    1112700
  • 财政年份:
    2011
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
SCREMS: High order numerical algorithms and their applications
SCEMS:高阶数值算法及其应用
  • 批准号:
    0922803
  • 财政年份:
    2009
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
International Conference on Advances in Scientific Computing; December 2009; Providence, RI
国际科学计算进展会议;
  • 批准号:
    0940863
  • 财政年份:
    2009
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Efficient High Order Numerical Methods for Convection Dominated Partial Differential
对流主导偏微分的高效高阶数值方法
  • 批准号:
    0809086
  • 财政年份:
    2008
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: High Order Accurate Weighted Essentially Non-Oscillatory Algorithms with Applications to Cosmological Hydrodynamic Simulations
合作研究:高阶精确加权本质非振荡算法及其在宇宙流体动力学模拟中的应用
  • 批准号:
    0506734
  • 财政年份:
    2005
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
High Order Numerical Methods for Wave Phenomena in Adaptive, Multiscale and Uncertain Environments
自适应、多尺度和不确定环境中波动现象的高阶数值方法
  • 批准号:
    0510345
  • 财政年份:
    2005
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
High Order Methods for Linear and Nonlinear Waves
线性和非线性波的高阶方法
  • 批准号:
    0207451
  • 财政年份:
    2002
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant

相似国自然基金

心理危机预警大学生园艺疗法方案制定关键问题研究
  • 批准号:
    32301661
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高寒草地气孔导度对水分胁迫响应的参数化方案发展及其应用
  • 批准号:
    42305050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
半监督下最优个性化治疗方案的统计推断
  • 批准号:
    12301337
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习与物理规律的非均质含水层刻画与最优采样方案研究
  • 批准号:
    42302271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
  • 批准号:
    32371621
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Efficient Neural Network Based Numerical Schemes for Hyperbolic Conservation Laws
基于高效神经网络的双曲守恒定律数值方案
  • 批准号:
    2208518
  • 财政年份:
    2022
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
High Order Maximum Principle Preserving Finite Difference Schemes for Hyperbolic Conservation Laws
高阶极大值原理保持双曲守恒定律的有限差分格式
  • 批准号:
    1316662
  • 财政年份:
    2013
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Discontinuous Fluctuation Distribution Schemes for Hyperbolic Conservation Laws
双曲守恒定律的不连续涨落分布方案
  • 批准号:
    EP/G003645/1
  • 财政年份:
    2009
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Research Grant
High Order and Efficient Numerical Schemes for Multi-Dimensional Hyperbolic Systems of Conservation Laws and for Simulations of Multi-Phase Fluids in Applications
守恒定律多维双曲系统和应用中多相流体模拟的高阶高效数值方案
  • 批准号:
    0411504
  • 财政年份:
    2004
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
  • 批准号:
    0310585
  • 财政年份:
    2003
  • 资助金额:
    $ 38.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了