High Order Schemes for Hyperbolic and Convection-dominated Problems
双曲和对流主导问题的高阶方案
基本信息
- 批准号:1418750
- 负责人:
- 金额:$ 38.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, the PI will perform research in the algorithm design and analysis of high order numerical methods. These algorithms are used to solve scientific and engineering problems arising from diverse application fields such as aerospace engineering, semi-conductor device design, astrophysics, and biological problems. Even with today's fast computers, it is still essential to design efficient and reliable algorithms which can be used to obtain accurate solutions to these application problems. The broader impacts resulting from the proposed activity will be a suite of powerful computational tools, suitable for various applications mentioned above. These tools are expected to make positive contributions to computer simulations of the complicated solution structure in these applications. The algorithms to be investigated include the finite difference and finite volume weighted essentially non-oscillatory (WENO) schemes and discontinuous Galerkin finite element methods, for solving hyperbolic and other convection dominated partial differential equations (PDEs). While the emphasis of this project is on algorithm design and analysis, close attention will be paid to applications. Topics of proposed investigations will include the study on high order accurate bound-preserving algorithms and applications, an inverse Lax-Wendroff procedure for high order numerical boundary conditions for finite difference schemes on rectangular meshes when the physical boundary is not aligned with the meshes, WENO schemes with subcell resolution for nonconservative problems, Lagrangian type finite volume schemes for multi-material flows, energy-conserving discontinuous Galerkin methods for long time simulation of wave problems, efficient discontinuous Galerkin methods for front propagation problems with obstacles, superconvergence analysis of discontinuous Galerkin methods and its applications in adaptive computation, simple WENO limiters for discontinuous Galerkin methods in unstructured meshes for problems with strong shocks, multi-scale methods based on the discontinuous Galerkin framework, analysis and numerical solutions for traffic and pedestrian flow models, turbulence simulation in cosmology, and study on aggregation and coordinated movement in computational biology. Problems in applications will motivate the design of new algorithms or new features in existing algorithms; mathematics tools are used to analyze these algorithms to give guidelines for their applicability and limitations; practical considerations including parallel implementation issues are addressed to make the algorithms competitive in large scale calculations; and collaborations with engineers and other applied scientists enable the efficient application of these new algorithms or new features in existing algorithms.
在这个项目中,PI将对高阶数值方法的算法设计和分析进行研究。这些算法用于解决来自不同应用领域的科学和工程问题,如航空航天工程、半导体器件设计、天体物理学和生物学问题。即使在今天的快速计算机,它仍然是必不可少的设计高效可靠的算法,可以用来获得准确的解决这些应用问题。拟议的活动所产生的更广泛的影响将是一套强大的计算工具,适用于上述各种应用。这些工具有望为这些应用中复杂解结构的计算机模拟做出积极贡献。要研究的算法包括有限差分和有限体积加权本质非振荡(WENO)格式和不连续Galerkin有限元方法,用于求解双曲型和其他对流主导的偏微分方程(PDEs)。本项目的重点是算法设计和分析,同时也会密切关注应用。建议的研究主题将包括高阶精确保界算法和应用的研究,当物理边界与网格不对齐时,矩形网格上有限差分格式的高阶数值边界条件的反Lax-Wendroff过程,非保守问题的具有亚单元分辨率的WENO格式,多材料流动的拉格朗日型有限体积格式,长时间波问题模拟的节能型间断Galerkin方法,有障碍物前传播问题的高效间断Galerkin方法,间断Galerkin方法的超收敛分析及其在自适应计算中的应用,强冲击问题非结构网格中间断Galerkin方法的简单WENO限制,基于间断Galerkin框架的多尺度方法,交通和行人流模型的分析和数值解,宇宙学中的湍流模拟,计算生物学中的聚集和协调运动研究。应用中的问题会激发新算法的设计或现有算法的新特性;使用数学工具对这些算法进行分析,给出它们的适用性和局限性的指导;实际考虑包括并行实现问题,以使算法在大规模计算中具有竞争力;与工程师和其他应用科学家的合作能够有效地应用这些新算法或现有算法中的新功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chi-Wang Shu其他文献
Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes
用加权紧致非线性格式改进欧拉方程稳态解的收敛性
- DOI:
10.1007/s10255-013-0230-6 - 发表时间:
2013-07 - 期刊:
- 影响因子:0
- 作者:
Shuhai Zhang, Meiliang Mao;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Stability of high order finite difference schemes with implicit-explicit time-marching for convection-diffusion and convection-dispersion equations
对流扩散和对流色散方程隐式-显式时间推进高阶有限差分格式的稳定性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.1
- 作者:
Meiqi Tan;Juan Cheng;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
A high order positivity-preserving polynomial projection remapping method
一种高阶保正多项式投影重映射方法
- DOI:
10.1016/j.jcp.2022.111826 - 发表时间:
2023-02 - 期刊:
- 影响因子:4.1
- 作者:
Nuo Lei;Juan Cheng;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Front tracking algorithm for the Lighthill-Whitham-Richards traffic flow model with a piecewise quadratic, continuous, non-smooth, and non-concave fundamental diagram
具有分段二次、连续、非光滑、非凹基本图的 Lighthill-Whitham-Richards 交通流模型的前方跟踪算法
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:1.1
- 作者:
Peng Zhang;Wenqin Chen;S. C. Wong;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Numerical experiments on the accuracy of ENO and modified ENO schemes
- DOI:
10.1007/bf01065581 - 发表时间:
1990-06 - 期刊:
- 影响因子:2.5
- 作者:
Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Chi-Wang Shu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chi-Wang Shu', 18)}}的其他基金
High Order Schemes: Bound Preserving, Moving Boundary, Stochastic Effects and Efficient Time Discretization
高阶方案:保界、移动边界、随机效应和高效时间离散化
- 批准号:
2309249 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
High Order Schemes: Robustness, Efficiency, and Stochastic Effects
高阶方案:鲁棒性、效率和随机效应
- 批准号:
2010107 - 财政年份:2020
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
Algorithm Development, Analysis, and Application of High Order Schemes
高阶方案的算法开发、分析与应用
- 批准号:
1719410 - 财政年份:2017
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
Algorithm Design and Analysis for High Order Numerical Methods
高阶数值方法的算法设计与分析
- 批准号:
1112700 - 财政年份:2011
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
SCREMS: High order numerical algorithms and their applications
SCEMS:高阶数值算法及其应用
- 批准号:
0922803 - 财政年份:2009
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
International Conference on Advances in Scientific Computing; December 2009; Providence, RI
国际科学计算进展会议;
- 批准号:
0940863 - 财政年份:2009
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
Efficient High Order Numerical Methods for Convection Dominated Partial Differential
对流主导偏微分的高效高阶数值方法
- 批准号:
0809086 - 财政年份:2008
- 资助金额:
$ 38.78万 - 项目类别:
Continuing Grant
Collaborative Research: High Order Accurate Weighted Essentially Non-Oscillatory Algorithms with Applications to Cosmological Hydrodynamic Simulations
合作研究:高阶精确加权本质非振荡算法及其在宇宙流体动力学模拟中的应用
- 批准号:
0506734 - 财政年份:2005
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
High Order Numerical Methods for Wave Phenomena in Adaptive, Multiscale and Uncertain Environments
自适应、多尺度和不确定环境中波动现象的高阶数值方法
- 批准号:
0510345 - 财政年份:2005
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
High Order Methods for Linear and Nonlinear Waves
线性和非线性波的高阶方法
- 批准号:
0207451 - 财政年份:2002
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
相似海外基金
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
- 批准号:
23K10979 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The influence of fungal networks on the success of tree-planting schemes
真菌网络对植树计划成功的影响
- 批准号:
2898803 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Studentship
Construction of Post-quantum Signature Schemes based on Lattices
基于格的后量子签名方案构建
- 批准号:
EP/X036669/1 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Research Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
- 批准号:
2310746 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Continuing Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
- 批准号:
2302072 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Continuing Grant
Research on Cryptographic Schemes with Probabilistically Decryptable Encryption Scheme
概率可解密加密方案的密码方案研究
- 批准号:
23K19952 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Standard Grant
Advanced inertial confinement fusion schemes
先进的惯性约束聚变方案
- 批准号:
2887053 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Studentship
Fundamentals and applications of tropical schemes
热带计划的基础和应用
- 批准号:
EP/X02752X/1 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Fellowship














{{item.name}}会员




