High Order Schemes: Robustness, Efficiency, and Stochastic Effects
高阶方案:鲁棒性、效率和随机效应
基本信息
- 批准号:2010107
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns algorithm design and analysis of efficient, highly accurate numerical methods for solving partial differential equations. Such equations are used in simulation of systems arising in diverse application fields such as aerospace engineering, semi-conductor device design, astrophysics, and biology. Even with today's fast computers, efficient computational solution of partial differential equations remains a challenge, and it is essential to design improved algorithms that can be used to obtain accurate solutions in these application models. The research aims to produce a suite of powerful computational tools suitable for computer simulations of the complicated solution structure in these applications. The project provides training for a graduate student through involvement in the research.This project conducts research in algorithm development, analysis, and application of high order numerical methods, including discontinuous Galerkin (DG) finite element methods and finite difference and finite volume weighted essentially non-oscillatory (WENO) schemes, for solving linear and nonlinear convection-dominated partial differential equations, emphasizing scheme robustness, efficiency, and the treatment of stochastic effects. The project focuses on algorithm development and analysis. Topics of investigation include a new class of multi-resolution WENO schemes with increasingly higher order of accuracy, an inverse Lax-Wendroff procedure for high-order numerical boundary conditions for finite difference schemes on Cartesian meshes solving problems in general geometry, efficient and stable time-stepping techniques for DG schemes and other spatial discretizations, high order accurate bound-preserving schemes and applications, entropy stable DG methods, optimal convergence and superconvergence analysis of DG methods, numerical solutions of stochastic differential equations, and the study of modeling, analysis, and simulation for traffic flow and air pollution. Applications motivate the design of new algorithms or new features in existing algorithms; mathematical tools will be used to analyze these algorithms to give guidelines for their applicability and limitations and to enhance their accuracy, stability, and robustness; and collaborations with engineers and other applied scientists will enable the efficient application of these new algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及求解偏微分方程的高效、高精度数值方法的算法设计和分析。此类方程用于模拟航空航天工程、半导体器件设计、天体物理学和生物学等不同应用领域中出现的系统。 即使使用当今快速的计算机,偏微分方程的有效计算解决方案仍然是一个挑战,并且必须设计可用于在这些应用模型中获得准确解决方案的改进算法。 该研究旨在开发一套强大的计算工具,适用于对这些应用中的复杂解决方案结构进行计算机模拟。该项目通过参与研究为研究生提供培训。该项目进行高阶数值方法的算法开发、分析和应用研究,包括不连续伽辽金(DG)有限元方法以及有限差分和有限体积加权本质非振荡(WENO)方案,用于求解线性和非线性对流主导的偏微分方程,强调方案的鲁棒性, 效率和随机效应的处理。 该项目专注于算法开发和分析。研究主题包括一类精度越来越高的新型多分辨率 WENO 方案、用于解决一般几何问题的笛卡尔网格有限差分格式的高阶数值边界条件的逆 Lax-Wendroff 程序、DG 方案和其他空间离散化的高效稳定的时间步进技术、高阶精确边界保持方案和应用, 熵稳定DG方法、DG方法的最优收敛和超收敛分析、随机微分方程的数值解以及交通流和空气污染的建模、分析和模拟研究。 应用激发了新算法的设计或现有算法的新功能;将使用数学工具来分析这些算法,为其适用性和局限性提供指导,并提高其准确性、稳定性和鲁棒性;与工程师和其他应用科学家的合作将使这些新算法得到有效应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A high order positivity-preserving conservative WENO remapping method based on a moving mesh solver
- DOI:10.1016/j.jcp.2022.111754
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Xiaolu Gu;Juan Cheng;Yue Li;Chi-Wang Shu
- 通讯作者:Xiaolu Gu;Juan Cheng;Yue Li;Chi-Wang Shu
Effects of Air Quality on Housing Location: A Predictive Dynamic Continuum User-Optimal Approach
- DOI:10.1287/trsc.2021.1116
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Liangze Yang;S. Wong;H. Ho;Mengping Zhang;Chi-Wang Shu
- 通讯作者:Liangze Yang;S. Wong;H. Ho;Mengping Zhang;Chi-Wang Shu
An inverse Lax-Wendroff procedure for hyperbolic conservation laws with changing wind direction on the boundary
边界风向变化双曲守恒定律的逆 Lax-Wendroff 过程
- DOI:10.1016/j.jcp.2020.109940
- 发表时间:2020-10
- 期刊:
- 影响因子:4.1
- 作者:Jianfang Lu;Chi-Wang Shu;Sirui Tan;Mengping Zhang
- 通讯作者:Mengping Zhang
Bilevel optimization of a housing allocation and traffic emission problem in a predictive dynamic continuum transportation system
- DOI:10.1111/mice.13007
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Liangze Yang;S. C. Wong;H. Ho;Chi-Wang Shu;Mengping Zhang
- 通讯作者:Liangze Yang;S. C. Wong;H. Ho;Chi-Wang Shu;Mengping Zhang
An Entropy Stable Essentially Oscillation-Free Discontinuous Galerkin Method for Hyperbolic Conservation Laws
双曲守恒定律的熵稳定基本无振荡间断伽辽金法
- DOI:10.1137/22m1524151
- 发表时间:2024
- 期刊:
- 影响因子:3.1
- 作者:Liu, Yong;Lu, Jianfang;Shu, Chi-Wang
- 通讯作者:Shu, Chi-Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chi-Wang Shu其他文献
Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes
用加权紧致非线性格式改进欧拉方程稳态解的收敛性
- DOI:
10.1007/s10255-013-0230-6 - 发表时间:
2013-07 - 期刊:
- 影响因子:0
- 作者:
Shuhai Zhang, Meiliang Mao;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Stability of high order finite difference schemes with implicit-explicit time-marching for convection-diffusion and convection-dispersion equations
对流扩散和对流色散方程隐式-显式时间推进高阶有限差分格式的稳定性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.1
- 作者:
Meiqi Tan;Juan Cheng;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
A high order positivity-preserving polynomial projection remapping method
一种高阶保正多项式投影重映射方法
- DOI:
10.1016/j.jcp.2022.111826 - 发表时间:
2023-02 - 期刊:
- 影响因子:4.1
- 作者:
Nuo Lei;Juan Cheng;Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Optimal error estimates to smooth solutions of the central discontinuous Galerkin methods for nonlinear scalar conservation laws
- DOI:
10.1051/m2an/2022037 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Mengjiao Jiao;Yan Jiang;Chi-Wang Shu;Mengping Zhang - 通讯作者:
Mengping Zhang
Numerical experiments on the accuracy of ENO and modified ENO schemes
- DOI:
10.1007/bf01065581 - 发表时间:
1990-06 - 期刊:
- 影响因子:2.5
- 作者:
Chi-Wang Shu - 通讯作者:
Chi-Wang Shu
Chi-Wang Shu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chi-Wang Shu', 18)}}的其他基金
High Order Schemes: Bound Preserving, Moving Boundary, Stochastic Effects and Efficient Time Discretization
高阶方案:保界、移动边界、随机效应和高效时间离散化
- 批准号:
2309249 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Algorithm Development, Analysis, and Application of High Order Schemes
高阶方案的算法开发、分析与应用
- 批准号:
1719410 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
High Order Schemes for Hyperbolic and Convection-dominated Problems
双曲和对流主导问题的高阶方案
- 批准号:
1418750 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Algorithm Design and Analysis for High Order Numerical Methods
高阶数值方法的算法设计与分析
- 批准号:
1112700 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
SCREMS: High order numerical algorithms and their applications
SCEMS:高阶数值算法及其应用
- 批准号:
0922803 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
International Conference on Advances in Scientific Computing; December 2009; Providence, RI
国际科学计算进展会议;
- 批准号:
0940863 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Efficient High Order Numerical Methods for Convection Dominated Partial Differential
对流主导偏微分的高效高阶数值方法
- 批准号:
0809086 - 财政年份:2008
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: High Order Accurate Weighted Essentially Non-Oscillatory Algorithms with Applications to Cosmological Hydrodynamic Simulations
合作研究:高阶精确加权本质非振荡算法及其在宇宙流体动力学模拟中的应用
- 批准号:
0506734 - 财政年份:2005
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
High Order Numerical Methods for Wave Phenomena in Adaptive, Multiscale and Uncertain Environments
自适应、多尺度和不确定环境中波动现象的高阶数值方法
- 批准号:
0510345 - 财政年份:2005
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
High Order Methods for Linear and Nonlinear Waves
线性和非线性波的高阶方法
- 批准号:
0207451 - 财政年份:2002
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
- 批准号:
23K10979 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The influence of fungal networks on the success of tree-planting schemes
真菌网络对植树计划成功的影响
- 批准号:
2898803 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Studentship
Construction of Post-quantum Signature Schemes based on Lattices
基于格的后量子签名方案构建
- 批准号:
EP/X036669/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
- 批准号:
2310746 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
- 批准号:
2302072 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Research on Cryptographic Schemes with Probabilistically Decryptable Encryption Scheme
概率可解密加密方案的密码方案研究
- 批准号:
23K19952 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Advanced inertial confinement fusion schemes
先进的惯性约束聚变方案
- 批准号:
2887053 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Studentship
Fundamentals and applications of tropical schemes
热带计划的基础和应用
- 批准号:
EP/X02752X/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Fellowship














{{item.name}}会员




