Inductive learning of nonlocal phonological interactions
非局部语音交互的归纳学习
基本信息
- 批准号:1724753
- 负责人:
- 金额:$ 21.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Language is a fundamental and universal aspect of human cognition. Linguistic research over the past five decades has established that language structure is governed by detailed rules. These rules constrain meanings, sentences, words, and sound patterns--the focus of the proposed research. For many years, sound structure was investigated primarily by theorizing. More recently, linguists have begun to test these theories using experiments and computational models. Computational models are valuable because they can only be created based on a complete and explicit understanding of the underlying rules. If the model succeeds in learning human-like rules when given the same data that is available to human learners, then it can shed some light on the rules that constitute the human knowledge of language and how humans learn these rules. In addition to helping scientists understand the human mind, computational models and the datasets they use are invaluable in developing applied computational tools for machine language translation, language identification, and artificial intelligence.The rules that govern sound patterns differ in nuanced ways between languages, and they can be divided into two kinds. First, all languages have rules that restrict how sounds interact with sounds that immediately precede or follow them: for example, in English, words can begin in "pr" but not "pn", whereas in Greek, words can begin in either sequence. But some languages also have rules that restrict the interactions of sounds that are not adjacent (nonlocal). Languages such as Hungarian and Turkish have vowel harmony, which means that all the vowels in a word tend to share certain features of their pronunciation. Navajo (Southwestern United States) has consonant harmony--consonants have to match in certain features. In languages such as Quechua (spoken in South America) and Amharic (Africa), certain features of consonants have to mismatch. Linguists have known about these patterns for a long time, and there are many theories of how they are cognitively represented. But these nonlocal rules continue to stymie computational models, because in order to notice them, the computer has to consider many more possibilities than it would for rules on adjacent sounds. This is similar to how much more difficult it is for a computer to crack a password the longer it gets. The proposed research builds a computational model of nonlocal rules that identifies certain clues to their existence in a language. The project will compile corpora to test the model's ability to find nonlocal rules (Quechua, Shona, Hungarian, Russian, Aymara, Sundanese). The model's performance will be compared with experiments with native speakers of several languages. The model, the corpora, and the experimental data will be made freely available to the scientific community and the public. Workshops will disseminate the research in Bolivia. The project will provide training for students in computational analysis and corpus building.
语言是人类认知的一个基本而普遍的方面。过去50年的语言学研究表明,语言结构是由详细的规则支配的。这些规则限制了意义、句子、单词和声音模式--这是拟议研究的重点。多年来,声音结构主要是通过理论化来研究的。最近,语言学家开始使用实验和计算模型来测试这些理论。计算模型是有价值的,因为它们只能基于对底层规则的完整和明确的理解来创建。如果该模型在获得人类学习者可用的相同数据时成功地学习了类似人类的规则,那么它可以揭示构成人类语言知识的规则以及人类如何学习这些规则。除了帮助科学家理解人类思维,计算模型和数据集在开发机器语言翻译、语言识别和人工智能的应用计算工具方面也是非常宝贵的。控制声音模式的规则在语言之间有细微的差异,它们可以分为两种。首先,所有的语言都有规则来限制声音与紧接在它们之前或之后的声音的相互作用:例如,在英语中,单词可以开始以“pr”开头,但不能以“pn”开头,而在希腊语中,单词可以以任何顺序开始开始。但有些语言也有规则限制不相邻(非本地)的声音之间的相互作用。匈牙利语和土耳其语等语言具有元音和谐,这意味着一个单词中的所有元音都倾向于共享其发音的某些特征。纳瓦霍语(美国西南部)有辅音和谐-辅音必须在某些特征上匹配。在克丘亚语(南美洲)和阿姆哈拉语(非洲)等语言中,辅音的某些特征必须不匹配。语言学家很早就知道这些模式,并且有许多关于它们如何被认知表示的理论。但是这些非局部规则继续阻碍计算模型,因为为了注意到它们,计算机必须考虑比相邻声音规则更多的可能性。这类似于计算机破解密码的难度越大,时间越长。拟议的研究建立了一个计算模型的非本地规则,确定某些线索,他们存在的语言。该项目将编译语料库,以测试该模型发现非本地规则(克丘亚语,绍纳语,匈牙利语,俄语,艾马拉语,巽他语)的能力。该模型的性能将与几种语言的母语使用者的实验进行比较。模型、语料库和实验数据将免费提供给科学界和公众。讲习班将在玻利维亚传播研究成果。该项目将为学生提供计算分析和语料库建设方面的培训。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strident harmony from the perspective of an inductive learner
从归纳学习者的角度来看,强烈的和谐
- DOI:10.3765/pda.v2art8.39
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gallagher, Gillian
- 通讯作者:Gallagher, Gillian
Learning complex segments
学习复杂的片段
- DOI:10.1353/lan.2021.0011
- 发表时间:2021
- 期刊:
- 影响因子:2.1
- 作者:Gouskova, Maria;Stanton, Juliet
- 通讯作者:Stanton, Juliet
Phonotactic restrictions and morphology in Aymara
艾马拉语的音位限制和形态
- DOI:10.5334/gjgl.826
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Gallagher, Gillian;Gouskova, Maria;Camacho Rios, Gladys
- 通讯作者:Camacho Rios, Gladys
Inducing nonlocal constraints from baseline phonotactics
从基线音位学中引入非局部约束
- DOI:10.1007/s11049-019-09446-x
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Gouskova, Maria;Gallagher, Gillian
- 通讯作者:Gallagher, Gillian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gillian Gallagher其他文献
Asymmetries in the representation of categorical phonotactics
分类音位学表示的不对称性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Gillian Gallagher - 通讯作者:
Gillian Gallagher
Speaker awareness of non-local ejective phonotactics in Cochabamba Quechua
科恰班巴克丘亚语中非局部弹射语音学的说话者意识
- DOI:
10.1007/s11049-013-9200-1 - 发表时间:
2013 - 期刊:
- 影响因子:1.3
- 作者:
Gillian Gallagher - 通讯作者:
Gillian Gallagher
Vowel Height Allophony and Dorsal Place Contrasts in Cochabamba Quechua
科恰班巴克丘亚语中元音高度同位异音和背位对比
- DOI:
10.1159/000443651 - 发表时间:
2016 - 期刊:
- 影响因子:0.9
- 作者:
Gillian Gallagher - 通讯作者:
Gillian Gallagher
Phonotactic knowledge and phonetically unnatural classes: the plain uvular in Cochabamba Quechua
音位知识和语音非自然类:科恰班巴盖丘亚语中的普通小舌
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.3
- 作者:
Gillian Gallagher - 通讯作者:
Gillian Gallagher
Accidental Gaps and Surface-Based Phonotactic Learning: A Case Study of South Bolivian Quechua
意外间隙和基于表面的音位学习:南玻利维亚盖丘亚语的案例研究
- DOI:
10.1162/ling_a_00285 - 发表时间:
2018 - 期刊:
- 影响因子:1.6
- 作者:
Colin Wilson;Gillian Gallagher - 通讯作者:
Gillian Gallagher
Gillian Gallagher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gillian Gallagher', 18)}}的其他基金
Workshop: Bridging the gap between phonological theory and research in speech disorders
研讨会:弥合语音理论与言语障碍研究之间的差距
- 批准号:
1651065 - 财政年份:2017
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Building and Interpreting Possession Sentences
博士论文研究:占有句子的构建和解释
- 批准号:
1324839 - 财政年份:2013
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
Locality, markedness and phonetic factors in speaker knowledge of non-local ejective phonotactics in South Bolivian Quechua
南玻利维亚克丘亚语非局部喷射语音学知识中的局部性、标记性和语音因素
- 批准号:
1222700 - 财政年份:2012
- 资助金额:
$ 21.45万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
EU-Funded
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
- 批准号:
DP240103278 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Discovery Early Career Researcher Award
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
- 批准号:
DE240101089 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Discovery Early Career Researcher Award
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Studentship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Research Grant