Ambiguous Random Variables and Menu Effects
不明确的随机变量和菜单效果
基本信息
- 批准号:1729021
- 负责人:
- 金额:$ 38.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award funds research in the economic theory of how people make decisions. The first part of the project will focus on how people make decisions in dynamic situations characterized by ambiguity. These situations arise when people have so little information that they cannot formulate ideas of how likely different outcomes are. The second project seeks to develop a model that will predict what psychologists and behavior economists call menu effects. These occur when the choices available to an individual (the so-called 'menu') affects his/her decision in ways that are not consistent with standard economic theory. This project contributes to national interest because understanding individual decision making in these economic contexts will help other researchers develop new insights for management practice and public policy that will benefit the U.S. public. The research focuses on ambiguity and on menu effects. The first part offers a new theory of conditional probability and conditional expectation (called evaluation) suitable for the analysis of dynamic choice problems under ambiguity. It develops a new foundation for belief revision under ambiguity and will characterize this updating rule by imposing restrictions on the evaluation operator. Existing dynamic ambiguity models tend to restrict the set of conditioning events, and this limits applicability to problems that involve costly information acquisition. The new model permits information to arrive in every possible order and identifies a new parameter allows decision makers with identical behavior in static situations to behave differently when facing dynamic problems. The second project provides a framework for analyzing menu effects, in particular attraction, compromise, and endowment effects. The goal is a model demonstrating that a variety of observed deviations from standard consumer theory can be derived from a common underlying source: the agent's inability to tailor his or her choice behavior to the specific problem. The analysis reveals common features (causes) of each of the three menu effects.
该奖项资助研究人们如何做出决策的经济理论。项目的第一部分将重点关注人们如何在以模糊为特征的动态情况下做出决策。当人们掌握的信息太少,以至于他们无法构想出不同结果的可能性有多大时,就会出现这种情况。第二个项目旨在开发一个模型,以预测心理学家和行为经济学家所说的菜单效应。当个人可用的选择(所谓的“菜单”)以与标准经济理论不一致的方式影响他/她的决策时,就会发生这种情况。这个项目有助于国家利益,因为理解这些经济背景下的个人决策将有助于其他研究人员对管理实践和公共政策产生新的见解,这将有利于美国公众。研究的重点是歧义和菜单效应。第一部分提出了一种适用于模糊情况下动态选择问题分析的条件概率和条件期望的新理论(称为评价)。它为模糊情况下的信念修正建立了新的基础,并通过对求值算子施加限制来描述这种更新规则。现有的动态模糊模型倾向于限制条件作用事件的集合,这限制了对涉及昂贵信息获取的问题的适用性。新模型允许信息以每一种可能的顺序到达,并识别一个新的参数,允许在静态情况下具有相同行为的决策者在面对动态问题时采取不同的行为。第二个项目提供了一个分析菜单效应的框架,特别是吸引力、妥协和禀赋效应。我们的目标是建立一个模型,证明从标准消费者理论中观察到的各种偏差可以从一个共同的潜在来源推导出来:代理无法根据具体问题调整他或她的选择行为。分析揭示了三种菜单效应的共同特征(原因)。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating ambiguous random variables from Choquet to maxmin expected utility
评估从 Choquet 到 maxmin 期望效用的模糊随机变量
- DOI:10.1016/j.jet.2020.105129
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Gul, Faruk;Pesendorfer, Wolfgang
- 通讯作者:Pesendorfer, Wolfgang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Pesendorfer其他文献
Partisan politics and election failure with ignorant voters
- DOI:
10.1016/j.jet.2008.04.005 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:
- 作者:
Faruk Gul;Wolfgang Pesendorfer - 通讯作者:
Wolfgang Pesendorfer
Wolfgang Pesendorfer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Pesendorfer', 18)}}的其他基金
Behavioral Optimization in Discrete Choice and in Competitive Markets
离散选择和竞争市场中的行为优化
- 批准号:
1060073 - 财政年份:2011
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
Three Projects in Economic Theory: Models of Interdependent Preferences and of Candidate Competition
经济理论的三个项目:相互依赖的偏好模型和候选人竞争模型
- 批准号:
0550540 - 财政年份:2006
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
Three Projects in Choice Theory: Random Choice, Interdependent Preferences and Changing Tastes
选择理论的三个项目:随机选择、相互依赖的偏好和不断变化的品味
- 批准号:
0236882 - 财政年份:2003
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
Temptation and Self-Control in Dynamic Choice
动态选择中的诱惑与自我控制
- 批准号:
9911177 - 财政年份:2000
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
Information Aggregation in Bayesian Games with many Players
多玩家贝叶斯博弈中的信息聚合
- 批准号:
9796256 - 财政年份:1997
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
Information Aggregation in Bayesian Games with many Players
多玩家贝叶斯博弈中的信息聚合
- 批准号:
9617735 - 财政年份:1997
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
Fashion Dynamics, Anonymity in Dynamic Games, and Participation and Efficiency in Voting Games
时尚动态、动态游戏的匿名性、投票游戏的参与度和效率
- 批准号:
9409180 - 财政年份:1994
- 资助金额:
$ 38.64万 - 项目类别:
Standard Grant
相似海外基金
Proving two long-standing conjectures involving Gaussian random variables
证明两个涉及高斯随机变量的长期猜想
- 批准号:
559668-2021 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Discrete Random Variables in Machine Learning
机器学习中的离散随机变量
- 批准号:
518720-2018 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Applications of multilevel modelling: An evaluation of the assumption of no correlation between explanatory variables and random effects
多级建模的应用:解释变量与随机效应之间不相关的假设的评估
- 批准号:
2604266 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Studentship
Proving two long-standing conjectures involving Gaussian random variables
证明两个涉及高斯随机变量的长期猜想
- 批准号:
559668-2021 - 财政年份:2021
- 资助金额:
$ 38.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Discrete Random Variables in Machine Learning
机器学习中的离散随机变量
- 批准号:
518720-2018 - 财政年份:2020
- 资助金额:
$ 38.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Discrete Random Variables in Machine Learning
机器学习中的离散随机变量
- 批准号:
518720-2018 - 财政年份:2019
- 资助金额:
$ 38.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Discrete Random Variables in Machine Learning
机器学习中的离散随机变量
- 批准号:
518720-2018 - 财政年份:2018
- 资助金额:
$ 38.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Studies on convergence in law of random variables from the viewpoint of functional analysis
从泛函分析的角度研究随机变量收敛规律
- 批准号:
17K14202 - 财政年份:2017
- 资助金额:
$ 38.64万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Optimization problems in optimal regression design, response-adaptive design and categorical random variables
最优回归设计、响应自适应设计和分类随机变量中的优化问题
- 批准号:
261802-2013 - 财政年份:2017
- 资助金额:
$ 38.64万 - 项目类别:
Discovery Grants Program - Individual
Optimization problems in optimal regression design, response-adaptive design and categorical random variables
最优回归设计、响应自适应设计和分类随机变量中的优化问题
- 批准号:
261802-2013 - 财政年份:2016
- 资助金额:
$ 38.64万 - 项目类别:
Discovery Grants Program - Individual