Behavioral Optimization in Discrete Choice and in Competitive Markets
离散选择和竞争市场中的行为优化
基本信息
- 批准号:1060073
- 负责人:
- 金额:$ 38.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this behavioral decision theory project is to develop two tractable models of decision making that weaken standard rationality requirements and accommodate experimental evidence from economics, psychology and marketing.The first part of the project will develop a new model of random choice; a model in which decision makers have coherent objectives but make errors pursuing those objectives. Describing decision making as random has two important advantages: First, it facilitates the measurement of preferences; that is, random choice models allow the econometrician to quantify the intensity of preference via choice frequencies. Second, random choice models facilitate aggregation across different economic agents. The behavior of distinct individuals can be used as evidence for a single model.The first part of this research will introduce a new model of random choice, the generalized attribute selection model (GAR), to address key regularities of choice data found in the experiments in economics, psychology and in the marketing literature. We expect this model to become a useful tool for analyzing consumer behavior.Behavioral models that constrain the decision maker's ability to match her behavior to the details of her environment have proven effective in explaining systematic departures from standard models of "rational choice." The second part of the project will introduce a general analytical device for incorporating behavioral elements into competitive economies. Specifically, this research will analyze a dynamic competitive economy with consumers who are limited in their ability to adjust their consumption choices to their specific circumstances. One application of this theory is asset price volatility: we expect to demonstrate that with a given set of fundamentals (preferences and technology), there is more price volatility in a behavioral competitive equilibrium than in a standard competitive equilibrium.The ultimate goal of this research is to provide a simple model that permits researchers to quantify and measure the impact of behavioral factors in financial markets and enable them to distinguish the effects of these factors from the effects of fundamentals.
这个行为决策理论项目的目标是开发两个易于处理的决策模型,削弱标准理性的要求,并容纳来自经济学,心理学和市场营销的实验证据。该项目的第一部分将开发一个新的随机选择模型;在这个模型中,决策者有连贯的目标,但在追求这些目标时会犯错误。将决策描述为随机有两个重要的优点:首先,它便于偏好的测量;也就是说,随机选择模型允许计量经济学家通过选择频率来量化偏好的强度。第二,随机选择模型促进了不同经济主体之间的聚合。不同个体的行为可以作为单一模型的证据,本研究的第一部分将介绍一个新的随机选择模型,广义属性选择模型(GAR),以解决在经济学,心理学和市场营销文献中发现的选择数据的关键问题。我们期望这个模型成为分析消费者行为的有用工具。行为模型限制了决策者将其行为与其环境细节相匹配的能力,已经被证明可以有效地解释系统偏离“理性选择”的标准模型。“该项目的第二部分将介绍一种将行为因素纳入竞争性经济的一般分析方法。具体来说,本研究将分析一个动态的竞争经济与消费者谁是在他们的能力有限,以调整他们的消费选择,以他们的具体情况。这一理论的一个应用是资产价格波动:我们希望证明,在给定的一组基本原理下,(偏好和技术),行为竞争均衡比标准竞争均衡具有更大的价格波动性。本研究的最终目标是提供一个简单的模型,使研究人员能够量化和衡量金融市场中行为因素的影响,并使他们能够将这些因素的影响与基本面的影响区分开来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Pesendorfer其他文献
Partisan politics and election failure with ignorant voters
- DOI:
10.1016/j.jet.2008.04.005 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:
- 作者:
Faruk Gul;Wolfgang Pesendorfer - 通讯作者:
Wolfgang Pesendorfer
Wolfgang Pesendorfer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Pesendorfer', 18)}}的其他基金
Ambiguous Random Variables and Menu Effects
不明确的随机变量和菜单效果
- 批准号:
1729021 - 财政年份:2017
- 资助金额:
$ 38.45万 - 项目类别:
Standard Grant
Three Projects in Economic Theory: Models of Interdependent Preferences and of Candidate Competition
经济理论的三个项目:相互依赖的偏好模型和候选人竞争模型
- 批准号:
0550540 - 财政年份:2006
- 资助金额:
$ 38.45万 - 项目类别:
Continuing Grant
Three Projects in Choice Theory: Random Choice, Interdependent Preferences and Changing Tastes
选择理论的三个项目:随机选择、相互依赖的偏好和不断变化的品味
- 批准号:
0236882 - 财政年份:2003
- 资助金额:
$ 38.45万 - 项目类别:
Continuing Grant
Temptation and Self-Control in Dynamic Choice
动态选择中的诱惑与自我控制
- 批准号:
9911177 - 财政年份:2000
- 资助金额:
$ 38.45万 - 项目类别:
Continuing Grant
Information Aggregation in Bayesian Games with many Players
多玩家贝叶斯博弈中的信息聚合
- 批准号:
9796256 - 财政年份:1997
- 资助金额:
$ 38.45万 - 项目类别:
Continuing Grant
Information Aggregation in Bayesian Games with many Players
多玩家贝叶斯博弈中的信息聚合
- 批准号:
9617735 - 财政年份:1997
- 资助金额:
$ 38.45万 - 项目类别:
Continuing Grant
Fashion Dynamics, Anonymity in Dynamic Games, and Participation and Efficiency in Voting Games
时尚动态、动态游戏的匿名性、投票游戏的参与度和效率
- 批准号:
9409180 - 财政年份:1994
- 资助金额:
$ 38.45万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Machine Learning for Discrete Optimization
职业:用于离散优化的机器学习
- 批准号:
2338226 - 财政年份:2024
- 资助金额:
$ 38.45万 - 项目类别:
Continuing Grant
Discrete Structural Optimization through a Sequential Decision Process
通过顺序决策过程进行离散结构优化
- 批准号:
2322853 - 财政年份:2023
- 资助金额:
$ 38.45万 - 项目类别:
Standard Grant
A study on auctions in two-sided markets via discrete optimization
基于离散优化的双边市场拍卖研究
- 批准号:
22KJ1137 - 财政年份:2023
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Computation of Diverse Solutions in Discrete Convex Optimization Problems
离散凸优化问题的多样解的计算
- 批准号:
23K10995 - 财政年份:2023
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2022
- 资助金额:
$ 38.45万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 38.45万 - 项目类别:
Standard Grant
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2022
- 资助金额:
$ 38.45万 - 项目类别:
Discovery Grants Program - Individual
Metaheuristics and Heuristics for Combinatorial and Discrete Optimization Problems
组合和离散优化问题的元启发式和启发式
- 批准号:
DDG-2021-00019 - 财政年份:2022
- 资助金额:
$ 38.45万 - 项目类别:
Discovery Development Grant
A further challenge to the optimization problems with submodular discrete-convex structures
对子模离散凸结构优化问题的进一步挑战
- 批准号:
22K11922 - 财政年份:2022
- 资助金额:
$ 38.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discrete Optimization under Interactions and Uncertainty
交互作用和不确定性下的离散优化
- 批准号:
RGPIN-2020-05395 - 财政年份:2022
- 资助金额:
$ 38.45万 - 项目类别:
Discovery Grants Program - Individual