NRI: FND: Safe and Efficient Robot Collaboration System (SERoCS) for Next Generation Intelligent Industrial Co-Robots

NRI:FND:用于下一代智能工业协作机器人的安全高效的机器人协作系统(SERoCS)

基本信息

  • 批准号:
    1734109
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

In current automated factories, humans and robots typically work separately, partly for safety reasons and partly because full robotic automation has been a goal. In recent years, however, it has been recognized that there are tremendous opportunities when robots are brought out of their cages and allowed to collaborate with human workers in a shared workspace. Such collaboration takes advantage of both the intelligence, adaptability and flexibility of humans and the endurance, strength and reliability of robots. In any collaboration between humans and robots, i.e. co-robots, it is important to consider and ensure both the safety of the humans and the best performance of the robots. This project aims to establish a set of design principles for a safe and efficient robot collaboration system (SERoCS). Outside of factories, SERoCS may be applied in other settings, such as with mobility assistance of humans by robots and automated driving situations where human-driven vehicles and autonomous vehicles share the same road.SERoCS consists of three parts: (1) robust cognition algorithms for environment monitoring, (2) optimal task planning algorithms for safe human-robot collaboration, and (3) safe motion planning and control algorithms for safe human-robot interactions (HRI). Research on cognition environment monitoring algorithms involves the construction of a cognition model library and the implementation of an algorithm for online prediction and adaptation of human behavior. In addition, task planning algorithms for safe human-robot collaboration require the construction of a motion skill library learned from human demonstrations and its association with an algorithm for online task planning and objective generation using learned skills. The two-layer structure that will be employed for safe motion planning and control algorithms comprises a long-term, efficiency-oriented planning layer and a short-term, safety-oriented control layer for safe HRIs. The SERoCS will signicantly expand the skill sets of the co-robots and prevent and minimize occurrences of human-robot collision and robot-robot collision during operation.
在目前的自动化工厂中,人类和机器人通常分开工作,部分原因是安全原因,部分原因是完全的机器人自动化一直是一个目标。然而,近年来,人们认识到,当机器人被带出笼子并允许在共享工作空间中与人类工人合作时,会带来巨大的机会。 这种协作既利用了人类的智能、适应性和灵活性,又利用了机器人的耐力、力量和可靠性。在人类和机器人之间的任何协作中,重要的是要考虑并确保人类的安全和机器人的最佳性能。本计画旨在建立一套安全且有效率的机器人合作系统(SERoCS)的设计原则。 在工厂之外,SERoCS可以应用于其他环境,例如机器人对人类的移动辅助以及人类驾驶车辆和自动驾驶车辆共享同一条道路的自动驾驶情况。SERoCS由三部分组成:(1)用于环境监测的鲁棒认知算法,(2)用于安全人机协作的最优任务规划算法,以及(3)用于安全人机交互(HRI)的安全运动规划和控制算法。 认知环境监测算法的研究包括认知模型库的构建和行为在线预测与自适应算法的实现。此外,用于安全的人机协作的任务规划算法需要构建从人类演示中学习的运动技能库,并将其与用于在线任务规划和使用学习到的技能生成目标的算法相关联。将用于安全运动规划和控制算法的两层结构包括用于安全HRI的长期、效率导向的规划层和短期、安全导向的控制层。SERoCS将显著扩展协作机器人的技能集,并防止和最大限度地减少操作过程中人机碰撞和机器人碰撞的发生。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Robot Motion Planning with Collision Avoidance and Temporal Optimization
具有碰撞避免和时间优化的快速机器人运动规划
  • DOI:
    10.1109/icarcv.2018.8581194
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin, Hsien-Chung;Liu, Changliu;Tomizuka, Masayoshi
  • 通讯作者:
    Tomizuka, Masayoshi
Long-Term Trajectory Prediction of the Human Hand and Duration Estimation of the Human Action
人手的长期轨迹预测和人类动作的持续时间估计
  • DOI:
    10.1109/lra.2021.3124524
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Cheng, Yujiao;Tomizuka, Masayoshi
  • 通讯作者:
    Tomizuka, Masayoshi
A Framework for Robot Grasp Transferring with Non-rigid Transformation
非刚性变换机器人抓取转移框架
Safe Control Algorithms Using Energy Functions: A Uni ed Framework, Benchmark, and New Directions
使用能量函数的安全控制算法:统一框架、基准和新方向
Experimental Evaluation of Human Motion Prediction Toward Safe and Efficient Human Robot Collaboration
人体运动预测对安全高效人机协作的实验评估
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Masayoshi Tomizuka其他文献

Efficient Sim-to-real Transfer of Contact-Rich Manipulation Skills with Online Admittance Residual Learning
通过在线准入残差学习,将丰富的接触操作技能从模拟到真实的高效迁移
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiang Zhang;Changhao Wang;Lingfeng Sun;Zheng Wu;Xinghao Zhu;Masayoshi Tomizuka
  • 通讯作者:
    Masayoshi Tomizuka
Distributed Multi-agent Interaction Generation with Imagined Potential Games
具有想象潜力的分布式多智能体交互生成游戏
  • DOI:
    10.48550/arxiv.2310.01614
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingfeng Sun;Pin;Changhao Wang;Masayoshi Tomizuka;Zhuo Xu
  • 通讯作者:
    Zhuo Xu
Diff-LfD: Contact-aware Model-based Learning from Visual Demonstration for Robotic Manipulation via Differentiable Physics-based Simulation and Rendering
Diff-LfD:通过基于可微物理的模拟和渲染,通过机器人操作的视觉演示进行接触感知模型学习
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinghao Zhu;JingHan Ke;Zhixuan Xu;Zhixin Sun;Bizhe Bai;Jun Lv;Qingtao Liu;Yuwei Zeng;Qi Ye;Cewu Lu;Masayoshi Tomizuka;Lin Shao
  • 通讯作者:
    Lin Shao
The Application of Linear Conditioning to Maximize Actuator and Harmonic Drive Utilization on a Single-Joint Indirect-Drive Unit
  • DOI:
    10.1016/s1474-6670(17)33977-0
  • 发表时间:
    2002-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Erwin Satrya Budiman;Masayoshi Tomizuka
  • 通讯作者:
    Masayoshi Tomizuka
Correction to: H∞ Control Using Linear Parameter Varying Approach for Motion Control Systems Under Communication Delays: Application to PMSM
  • DOI:
    10.1007/s42835-020-00484-9
  • 发表时间:
    2020-07-13
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Youngwoo Lee;Jun Moon;Wonhee Kim;Chung Choo Chung;Masayoshi Tomizuka
  • 通讯作者:
    Masayoshi Tomizuka

Masayoshi Tomizuka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Masayoshi Tomizuka', 18)}}的其他基金

Design of Mechanism and Control Strategies for Assistive Systems to Remedy the Decrease in Physical Strength of the Aged and the Disabled
弥补老年人体力下降的辅助系统机构及控制策略设计
  • 批准号:
    1362172
  • 财政年份:
    2014
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
US-Japan Workshop on Bioinspired Sensing and Bioinspired Actuation (BSBA) Technologies; Hawaii; March 18 and 19, 2011
美日仿生传感和仿生驱动 (BSBA) 技术研讨会;
  • 批准号:
    1112579
  • 财政年份:
    2011
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
IDR/Collaborative Research: Monitoring and Mobility Assistance with Wireless Body Sensor Network and Mechatronic Actuation
IDR/合作研究:通过无线身体传感器网络和机电驱动进行监控和移动辅助
  • 批准号:
    1013657
  • 财政年份:
    2010
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Smart Shoes and Smart Socks for Abnormal Gait Diagnosis and Assistance
合作研究:智能鞋和智能袜用于异常步态诊断和辅助
  • 批准号:
    0800501
  • 财政年份:
    2008
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Student Travel to the World Forum on Smart Materials and Smart Structures Technologies 2007; China
学生前往 2007 年智能材料和智能结构技术世界论坛;
  • 批准号:
    0737775
  • 财政年份:
    2007
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
U.S.-Japan workshop on Advanced Integrated Sensor Technologies
美日先进集成传感器技术研讨会
  • 批准号:
    0736756
  • 财政年份:
    2007
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Intelligent Power Assist Systems Auto-Adaptive to Varying Human Characteristics and Enviornmental Conditions
自动适应不同人体特征和环境条件的智能助力系统
  • 批准号:
    0625446
  • 财政年份:
    2006
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
The World Forum on Smart Materials and Smart Structures Technology 2007 (SMSST'07)
2007年世界智能材料与智能结构技术论坛(SMSST07)
  • 批准号:
    0646282
  • 财政年份:
    2006
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Joint U.S.-China Workshop on Integrated Sensing Systems, Mechatronics and Smart Structures Technologies; September 19-21, 2005; Shandong Province, China
中美集成传感系统、机电一体化和智能结构技术联合研讨会;
  • 批准号:
    0531531
  • 财政年份:
    2005
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Sensors: Sensing Rich Drive Trains for Modern Mechatronic Systems
传感器:传感现代机电系统的丰富传动系统
  • 批准号:
    0529451
  • 财政年份:
    2005
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
  • 批准号:
    2024615
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NRI: FND: A Formal Methods Approach to Safe, Composable, and Distributed Reinforcement Learning for co-Robots
NRI:FND:协作机器人安全、可组合和分布式强化学习的形式化方法
  • 批准号:
    2024606
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NRI: FND: Using Multi-Modal Data to Make Robotic Grasp Algorithms Aware of Human Preferences for Safe Collaborative Robot-Human Handover Interactions with Novel Objects
NRI:FND:使用多模态数据使机器人抓取算法了解人类偏好,以实现与新物体的安全协作机器人-人类切换交互
  • 批准号:
    2023998
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
  • 批准号:
    2024692
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
S&AS: FND: Uncertainty-Aware Safe Deep Reinforcement Learning
S
  • 批准号:
    1849154
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Hierarchical Safe, and Distributed Feedback Control of Multiagent Legged Robots for Cooperative Locomotion and Manipulation
NRI:FND:COLLAB:用于协作运动和操纵的多智能腿机器人的分层安全分布式反馈控制
  • 批准号:
    1924617
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Hierarchical Safe, and Distributed Feedback Control of Multiagent Legged Robots for Cooperative Locomotion and Manipulation
NRI:FND:COLLAB:用于协作运动和操纵的多智能腿机器人的分层安全分布式反馈控制
  • 批准号:
    1924526
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection
NRI:FND:COLLAB:用于自主野火检测的分布式贝叶斯学习和安全控制
  • 批准号:
    1830399
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection
NRI:FND:COLLAB:用于自主野火检测的分布式贝叶斯学习和安全控制
  • 批准号:
    1830331
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
S&AS: FND: Safe Task-Aware Autonomous Resilient Systems (STAARS)
S
  • 批准号:
    1724248
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了