Geometric Variational Problems: Direct Methods, Associated Flows and the Influence of Ambient Geometry and Physics (C09 [B4]+)

几何变分问题:直接法、关联流以及环境几何和物理的影响(C09 [B4])

基本信息

项目摘要

Dieses Projekt untersucht die Gestalt und Regularität von Lösungen zu geometrischen Variationsproblemen und deren zugehörigen Gradientenflüssen, wobei insbesondere die Wechselwirkung mit der umgebenden Geometrie und der Physik eine zentrale Rolle spielt. Die betrachteten Probleme sind zentrale Fragestellungen aus den Gebieten der Elektro-Elastizitätstheorie, der Theorie der Minimalflächen in Riemannschen Mannigfaltigkeiten und Maximalflächen in Lorentzmannigfaltigkeiten, des mittleren Krümmungsflusses und der Theorie von Flüssen mit allgemeinen Geschwindigkeiten, sowie Fragestellungen, die sich mit dem Begriff der Masse, der quasi-lokalen Masse, des Massenzentrums, isoperimetrischen Gebieten und dem Willmorefunktional in asymptotisch flachen Mannigfaltigkeiten befassen.
2 .项目编号:untersucht die Gestalt und Regularität von Lösungen zu geomeischen Variationsproblemen and deren zugehörigen gradientenflssen,在此项目编号:untersucht die wehselwirkung der umgebendergeometrie and der Physik eine zentrale Rolle spielt。Die betrachteten problem sind zentrale Fragestellungen aus den Gebieten Elektro-Elastizitätstheorie, der Theorie der Minimalflächen in riemanannschen Mannigfaltigkeiten and Maximalflächen in Lorentzmannigfaltigkeiten, des mittleren krmungsflusses and der Theorie von flissen mit allgemeinen Geschwindigkeiten, sowie Fragestellungen, Die sich mit dem Begriff der mass, der准lokalen mass, des Massenzentrums,在渐近性迟发性迟发性迟发性迟发性迟发性迟发性迟发性迟发性迟发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
  • 批准号:
    2304432
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
  • 批准号:
    2143124
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2202343
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
  • 批准号:
    2044954
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Regularity and Singularity Issues in Geometric Variational Problems
几何变分问题中的正则性和奇异性问题
  • 批准号:
    2055686
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
  • 批准号:
    2105460
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了