I-Corps: Enabling Electronic Design using Data Intelligence

I-Corps:使用数据智能实现电子设计

基本信息

  • 批准号:
    1740531
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project stems from its data intelligence approach to empower electronic design automation. The semiconductor industry provides vital hardware backbone of the information technology age through an extremely wide range of integrated circuits (ICs) in computing devices and consumer electronics. Modern IC development process is bottlenecked by growing chip design complexity, e.g. measured by large device count and functionality diversity, and ever-demanding requirements on computing performance and power/energy efficiency. Advanced IC manufacturing processes are costly, and yet have unavoidable process variations, making fabricated chips susceptible to failures. With its revenue reaching $7.8 billion in 2015, the electronic design automation (EDA) industry supplies indispensable tools and methodologies that make IC design possible. The potential market and societal impact of the proposed EDA innovation is substantial. This technology can help semiconductor and chip design companies develop integrated circuits of improved performance and robustness with a reduced time-to-market and development cost.This I-Corps project demonstrates novel machine learning algorithms targeting electronic design automation. As the complexity of integrated circuits scales up rapidly, the need for smart design tools is prominent. The EDA industry is in the early phase of rapid integration of machine learning algorithms into commercial IC design flows. The learning methods focused in this project significantly improve the accuracy of statistical regression and classification over the current-state-of-the-art, and offer the much needed understanding of the underlying structure of the data. Built upon the focused machine learning algorithms, the targeted EDA technology can efficiently process simulation or measured performance data of existing chip designs, and intelligently learn the complex hidden relationships between performance specifications, design parameters, and manufacturing conditions. As a result, it offers a powerful data science solution to IC design optimization, verification, and debug. Implemented as high-performance parallel software design tools, the technology will bring the power of machine learning to the field of electronic design.
该I-Corps项目的更广泛的影响/商业潜力源于其数据智能方法,以增强电子设计自动化。半导体行业通过在计算设备和消费电子设备中的非常广泛的集成电路(IC)提供了信息技术时代的重要硬件骨干。 现代的IC开发过程是通过增长的芯片设计复杂性(例如通过大型设备计数和功能多样性衡量,以及对计算性能和功率/能源效率的不断要求的要求。先进的IC制造过程成本很高,但具有不可避免的过程变化,使制造的芯片容易受到故障的影响。 2015年的收入达到78亿美元,电子设计自动化(EDA)行业提供了使IC设计成为可能的必不可少的工具和方法。拟议的EDA创新的潜在市场和社会影响是巨大的。这项技术可以帮助半导体和芯片设计公司通过减少的上市时间和开发成本来开发提高性能和鲁棒性的集成电路。该I-Corps项目展示了针对电子设计自动化的新型机器学习算法。随着集成电路的复杂性迅速扩大,对智能设计工具的需求很突出。 EDA行业正处于将机器学习算法快速整合到商业IC设计流中的早期阶段。该项目集中在该项目中的学习方法显着提高了统计回归和分类对当前状态的准确性,并提供了对数据基础结构的急需理解。在集中的机器学习算法基础上,目标EDA技术可以有效地处理现有芯片设计的模拟或测量的性能数据,并智能学习性能规范,设计参数和制造条件之间的复杂隐藏关系。结果,它为IC设计优化,验证和调试提供了强大的数据科学解决方案。 该技术是作为高性能并行软件设计工具实施的,将把机器学习的力量带入电子设计领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Li其他文献

Pandemic babies? Fertility in the aftermath of the first COVID-19 wave across European regions
流行病婴儿?
  • DOI:
    10.4054/mpidr-wp-2022-027
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natalie Nitsche;Aiva Jasilioniene;Jessica Nisén;Peng Li;M. S. Kniffka;Jonas Schöley;G. Andersson;Christos Bagavos;A. Berrington;Ivan Čipin;Susana Clemente;L. Dommermuth;P. Fallesen;Dovilė Galdauskaitė;D. Jemna;Mathias Lerch;Cadhla McDonnell;A. Muller;K. Neels;Olga Pötzsch;Diego Ramiro;B. Riederer;Saskia te Riele;L. Szabó;L. Toulemon;Daniele Vignoli;K. Zeman;Tina Žnidaršič
  • 通讯作者:
    Tina Žnidaršič
ROS2 Real-time Performance Optimization and Evaluation
ROS2实时性能优化与评估
Outcome of Adenotonsillectomy for Obstructive Sleep Apnea Syndrome in Children
腺样体扁桃体切除术治疗儿童阻塞性睡眠呼吸暂停综合征的结果
Retrospective estimation of the time-varying effective reproduction number for a COVID-19 outbreak in Shenyang, China: An observational study
中国沉阳市 COVID-19 疫情随时间变化的有效繁殖数的回顾性估计:一项观察性研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Peng Li;Lihai Wen;Baijun Sun;Wei Sun;Huijie Chen
  • 通讯作者:
    Huijie Chen
Internal modification of Thermal-Extruded Polymethyl Pentene
热挤压聚甲基戊烯的内部改性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Zhu;Jing Xiang;D. Zhou;Peng Li;Hanwen Ou;Xihao Chen
  • 通讯作者:
    Xihao Chen

Peng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Li', 18)}}的其他基金

SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
  • 批准号:
    2334380
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
  • 批准号:
    2310170
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
  • 批准号:
    EP/X031608/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
CAREER: Compact digital biosensing system enabled by localized acoustic streaming
职业:由局部声流驱动的紧凑型数字生物传感系统
  • 批准号:
    2144216
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
  • 批准号:
    1956313
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    2000851
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1911067
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
  • 批准号:
    1948201
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
  • 批准号:
    1940761
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
  • 批准号:
    1810125
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

ERI: Enabling tunable electronic device fabrication on flexible substrates using Barium Strontium Titanate (BST) printable ink development
ERI:使用钛酸锶钡 (BST) 可印刷油墨开发,在柔性基板上实现可调电子设备制造
  • 批准号:
    2301693
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Enabling High-Impact Collaborative Clinical and Translational Research through Effective Information Management: A Prototype Intervention
通过有效的信息管理实现高影响力的协作临床和转化研究:原型干预
  • 批准号:
    10637143
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Development of novel quantum vacuum-based electronic devices platform and enabling its microfabrication methods.
开发新型基于量子真空的电子器件平台并实现其微加工方法。
  • 批准号:
    559532-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Alliance Grants
Enabling technologies featuring nanomaterials for portable and wearable polymeric microfluidic and electronic platforms
用于便携式和可穿戴聚合物微流体和电子平台的纳米材料使能技术
  • 批准号:
    RGPIN-2019-05586
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Improving surgical outcomes through optimized hernia prediction
通过优化疝气预测改善手术结果
  • 批准号:
    10532801
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了