Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
基本信息
- 批准号:1810125
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Supply voltage regulation serves the critical role of delivering power to on-chip devices at well-regulated voltage levels. Voltage regulation presents key design challenges of electronic systems ranging from high-performance microprocessors to mobile system-on-a-chips. In such systems, the ever-growing need for processing capability must be fulfilled while staying within specified power, thermal, and battery-life limits. Power must be managed and delivered while maximizing system power efficiency in every possible way. The proposed research aims to address the above voltage regulation challenges by taking an interdisciplinary approach. Innovations in control, machine learning, and circuit design will be developed to enable adaptive supply voltage regulation systems involving a variety of on-chip/off-chip voltage regulators. The expected outcomes of this project will help build new generations of highly efficient circuits and systems that can self-adapt to varying operating conditions. The synergies between circuit/system design, control-theoretical exploration, and machine learning as pursued in this project will promote a new interdisciplinary direction for advancing electronic system design. The depth and breadth of this research will expose students to outstanding educational and training opportunities. Participation from undergraduate and underrepresented students is an important education mission of this project and will be promoted through recruiting and outreaching. The anticipated results from this project are expected to be broad and will be widely disseminated as well as brought to classroom to benefit undergraduate and graduate curriculum. Collaboration and interaction with industry constitutes an important channel for this project to impact the real world, which will be actively pursued. This project is based on the vision that the ultimate quality and efficiency in supply voltage regulation may be best achieved via a heterogeneous chain of voltage processing starting from on-board switching voltage regulators (VRs), to in-package/on-chip switching VRs, and finally to networks of distributed on-chip linear VRs. Heterogeneous voltage regulation (HVR) systems are promising as they encompass regulators with complimentary tradeoffs in response time, size, efficiency, and cost. The ultimate aim of this project is to enable HVR systems that will guarantee power integrity, incur minimal power loss, and autonomously adapt to workload changes and system/environmental uncertainties at multiple temporal scales. The above goal will be achieved by pursuing an integrated solution of novel control theory, circuits, and machine-learning enabled autonomous adaptation. Rigorous design techniques for decentralized and centralized control will be developed for distributed on-chip linear regulator networks and the HVR system with guaranteed stability and regulation performance. Efficient machine-learning algorithms and their on-chip integration will be employed to provide accurate real-time prediction of time-varying load currents. Autonomous adaptation of the HVR system will be supported by power-efficient control policies that preemptively adapt on-chip linear regulator networks and on-chip/off-chip VRs based on machine-learning predicted future current loads. Coping with system uncertainties is another key objective and will be achieved via deployment of control policies that are self-tuned by machine learning to attain the optimal power efficiency. The project will explore system-level design optimization to jointly optimize regulation performance, power efficiency, and design overhead across all voltage processing stages in a HVR system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电源电压调节在以良好调节的电压电平向片上器件供电方面发挥着关键作用。电压调节是从高性能微处理器到移动的片上系统的电子系统的关键设计挑战。在这样的系统中,必须满足对处理能力不断增长的需求,同时保持在指定的功率、热量和电池寿命限制内。 必须在以各种可能的方式最大化系统电源效率的同时管理和提供电源。拟议的研究旨在通过采取跨学科的方法来解决上述电压调节挑战。 将开发控制、机器学习和电路设计方面的创新,以实现涉及各种片上/片外电压调节器的自适应电源电压调节系统。该项目的预期成果将有助于构建新一代高效电路和系统,这些电路和系统可以自适应变化的操作条件。该项目所追求的电路/系统设计,控制理论探索和机器学习之间的协同作用将促进电子系统设计的新的跨学科方向。 这项研究的深度和广度将使学生获得出色的教育和培训机会。本科生和代表性不足的学生的参与是该项目的一项重要教育使命,将通过招募和外展来促进。该项目的预期成果预计将是广泛的,并将广泛传播,以及带到课堂上,以有利于本科生和研究生课程。 与产业界的合作与互动,是本项目影响真实的世界的重要渠道,将积极推进。 该项目基于这样的愿景,即通过从板上开关稳压器(VR)开始的异构电压处理链,到封装内/片上开关VR,最后到分布式片上线性VR网络,可以最好地实现电源电压调节的最终质量和效率。 异构电压调节(HVR)系统是有前途的,因为它们包括在响应时间、尺寸、效率和成本方面具有互补折衷的调节器。该项目的最终目标是使HVR系统能够保证电源完整性,产生最小的功率损耗,并在多个时间尺度上自主适应工作负载变化和系统/环境不确定性。 上述目标将通过追求新颖的控制理论,电路和机器学习实现自主适应的集成解决方案来实现。将为分布式片上线性调节器网络和具有保证稳定性和调节性能的HVR系统开发分散和集中控制的严格设计技术。 高效的机器学习算法及其片上集成将用于提供时变负载电流的准确实时预测。HVR系统的自主自适应将得到高能效控制策略的支持,这些策略基于机器学习预测的未来电流负载,抢先适应片上线性调节器网络和片上/片外VR。 应对系统不确定性是另一个关键目标,将通过部署控制策略来实现,这些控制策略通过机器学习进行自我调整,以实现最佳的功率效率。 该项目将探索系统级设计优化,以联合优化HVR系统中所有电压处理阶段的调节性能、功率效率和设计开销。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Li其他文献
Kleine nicht‐follikuläre weiße Papeln auf den Handrücken und in der Unterkieferregion
小黑毛 weiße Papeln auf den Handrücken 和 in der Unterkieferregion
- DOI:
10.1111/ddg.20_12642 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hui‐Jun Ma;Peng Li;Hui‐Yong Ma;Yang Yang;Chi - 通讯作者:
Chi
On the optimal placement of secure data objects over Internet
关于互联网上安全数据对象的最佳放置
- DOI:
10.1109/ipdps.2005.306 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Manghui Tu;Peng Li;Qingkai Ma;I. Yen;F. Bastani - 通讯作者:
F. Bastani
Probabilistic Visual Secret Sharing Scheme Based on Random Grids
基于随机网格的概率视觉秘密共享方案
- DOI:
10.1109/iih-msp.2013.101 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Peng Li;Q. Kong;Yanpeng Ma - 通讯作者:
Yanpeng Ma
Daytime to Night Image Translation Based on Semantic Segmentation
基于语义分割的昼夜图像翻译
- DOI:
10.1109/icsece58870.2023.10263472 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Peng Li;Suinan Wen;Wanyu Hou;Shihao Feng - 通讯作者:
Shihao Feng
CCN 2 and CCN 5 exerts opposing effect on fi broblast proliferation and transdifferentiation induced by TGF-b
CCN 2和CCN 5对TGF-b诱导的成纤维细胞增殖和转分化具有相反作用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Hong;Peng Li;Mengting Liu;Cong Liu;Zheng;Xiong Guo;Yuelin Zhang - 通讯作者:
Yuelin Zhang
Peng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Li', 18)}}的其他基金
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
- 批准号:
EP/X031608/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Research Grant
CAREER: Compact digital biosensing system enabled by localized acoustic streaming
职业:由局部声流驱动的紧凑型数字生物传感系统
- 批准号:
2144216 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:
1956313 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
- 批准号:
2000851 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1911067 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1948201 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
- 批准号:
1940761 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
I-Corps: Enabling Electronic Design using Data Intelligence
I-Corps:使用数据智能实现电子设计
- 批准号:
1740531 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
- 批准号:
MR/X023303/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
- 批准号:
MR/X030261/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
- 批准号:
MR/Y011635/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant