Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
基本信息
- 批准号:2000851
- 负责人:
- 金额:$ 30.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Supply voltage regulation serves the critical role of delivering power to on-chip devices at well-regulated voltage levels. Voltage regulation presents key design challenges of electronic systems ranging from high-performance microprocessors to mobile system-on-a-chips. In such systems, the ever-growing need for processing capability must be fulfilled while staying within specified power, thermal, and battery-life limits. Power must be managed and delivered while maximizing system power efficiency in every possible way. The proposed research aims to address the above voltage regulation challenges by taking an interdisciplinary approach. Innovations in control, machine learning, and circuit design will be developed to enable adaptive supply voltage regulation systems involving a variety of on-chip/off-chip voltage regulators. The expected outcomes of this project will help build new generations of highly efficient circuits and systems that can self-adapt to varying operating conditions. The synergies between circuit/system design, control-theoretical exploration, and machine learning as pursued in this project will promote a new interdisciplinary direction for advancing electronic system design. The depth and breadth of this research will expose students to outstanding educational and training opportunities. Participation from undergraduate and underrepresented students is an important education mission of this project and will be promoted through recruiting and outreaching. The anticipated results from this project are expected to be broad and will be widely disseminated as well as brought to classroom to benefit undergraduate and graduate curriculum. Collaboration and interaction with industry constitutes an important channel for this project to impact the real world, which will be actively pursued. This project is based on the vision that the ultimate quality and efficiency in supply voltage regulation may be best achieved via a heterogeneous chain of voltage processing starting from on-board switching voltage regulators (VRs), to in-package/on-chip switching VRs, and finally to networks of distributed on-chip linear VRs. Heterogeneous voltage regulation (HVR) systems are promising as they encompass regulators with complimentary tradeoffs in response time, size, efficiency, and cost. The ultimate aim of this project is to enable HVR systems that will guarantee power integrity, incur minimal power loss, and autonomously adapt to workload changes and system/environmental uncertainties at multiple temporal scales. The above goal will be achieved by pursuing an integrated solution of novel control theory, circuits, and machine-learning enabled autonomous adaptation. Rigorous design techniques for decentralized and centralized control will be developed for distributed on-chip linear regulator networks and the HVR system with guaranteed stability and regulation performance. Efficient machine-learning algorithms and their on-chip integration will be employed to provide accurate real-time prediction of time-varying load currents. Autonomous adaptation of the HVR system will be supported by power-efficient control policies that preemptively adapt on-chip linear regulator networks and on-chip/off-chip VRs based on machine-learning predicted future current loads. Coping with system uncertainties is another key objective and will be achieved via deployment of control policies that are self-tuned by machine learning to attain the optimal power efficiency. The project will explore system-level design optimization to jointly optimize regulation performance, power efficiency, and design overhead across all voltage processing stages in a HVR system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
供应电压调节在良好调节的电压水平上向片上设备传递电力的关键作用。电压法规提出了从高性能微处理器到移动系统芯片的电子系统的关键设计挑战。在这样的系统中,必须在保持指定功率,热力和电池寿命限制内时满足加工能力的不断增长的需求。 必须以各种可能的方式管理和传递功率,同时最大化系统功率效率。拟议的研究旨在通过采用跨学科方法来应对上述电压调节挑战。 将开发控制,机器学习和电路设计方面的创新,以启用涉及各种芯片/芯片电压调节器的自适应电源调节系统。该项目的预期结果将有助于建立新一代高效的电路和系统,这些电路和系统可以自适应为不同的操作条件。该项目中所述的电路/系统设计,控制理论探索和机器学习之间的协同作用将促进推进电子系统设计的新跨学科方向。 这项研究的深度和广度将使学生获得出色的教育和培训机会。本科生和代表性不足的学生的参与是该项目的重要教育任务,将通过招聘和推广来促进。该项目的预期结果预计将是广泛的,并且将被广泛传播,并将其带到教室,以使本科和研究生课程受益。 与行业的合作和互动是该项目影响现实世界的重要渠道,这将被积极追求。 该项目基于这样的愿景:供应电压调节的最终质量和效率可以通过从机上开关电压调节器(VRS)到包装/芯片上的芯片开关VR,最终到分布式芯片线性线性VR的网络从车载开关电压调节器(VRS)开始,从而最好地实现供应电压调节的最终质量和效率。 异构电压调节(HVR)系统在响应时间,尺寸,效率和成本方面具有免费权衡的监管机构,因此很有希望。该项目的最终目的是启用HVR系统,以确保功率完整性,最小的功率损失以及自主性地适应工作负载的变化以及在多个时间尺度上的系统/环境不确定性。 上述目标将通过追求新颖的控制理论,电路和机器学习能力自主适应的综合解决方案来实现。将开发用于分散和集中控制的严格设计技术,用于分布式芯片线性调节器网络和具有保证稳定性和调节性能的HVR系统。 有效的机器学习算法及其片上集成将用于提供准确的实时预测时间变化的负载电流。 HVR系统的自主改编将由发电的控制策略提供支持,这些策略可以根据机器学习预测的未来当前负载来促进芯片上线性调节器网络和芯片/Off-Chip VRS的支持。 应对系统不确定性是另一个关键目标,可以通过部署通过机器学习进行自调整以达到最佳功率效率的控制策略来实现。 该项目将探索系统级设计优化,以共同优化HVR系统中所有电压处理阶段的监管性能,功率效率和设计间接费用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variation-Aware Heterogeneous Voltage Regulation for Multi-Core Systems-on-a-Chip with On-Chip Machine Learning
具有片上机器学习功能的多核片上系统的变化感知异构电压调节
- DOI:10.1109/isqed48828.2020.9136985
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Riad, Joseph;Chen, Jianhao;Sanchez-Sinencio, Edgar;Li, Peng
- 通讯作者:Li, Peng
Power Management for Multicore Processors via Heterogeneous Voltage Regulation and Machine Learning Enabled Adaptation
- DOI:10.1109/tvlsi.2019.2923911
- 发表时间:2019-07
- 期刊:
- 影响因子:2.8
- 作者:Xin Zhan;Jianhao Chen;E. Sánchez-Sinencio;Peng Li
- 通讯作者:Xin Zhan;Jianhao Chen;E. Sánchez-Sinencio;Peng Li
A Stabilizing Centralized Controller for On-Chip Power Delivery Networks
用于片上供电网络的稳定集中控制器
- DOI:10.1109/tcsii.2019.2926670
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Riad, Joseph;Li, Peng;Sanchez-Sinencio, Edgar
- 通讯作者:Sanchez-Sinencio, Edgar
Parallel Time Batching: Systolic-Array Acceleration of Sparse Spiking Neural Computation
- DOI:10.1109/hpca53966.2022.00031
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Lee, Jeong-Jun;Zhang, Wenrui;Li, Peng
- 通讯作者:Li, Peng
Systolic-Array Spiking Neural Accelerators with Dynamic Heterogeneous Voltage Regulation
- DOI:10.1109/ijcnn52387.2021.9534037
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Jeong-Jun Lee;Jianhao Chen;Wenrui Zhang;Peng Li
- 通讯作者:Jeong-Jun Lee;Jianhao Chen;Wenrui Zhang;Peng Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Li其他文献
Pandemic babies? Fertility in the aftermath of the first COVID-19 wave across European regions
流行病婴儿?
- DOI:
10.4054/mpidr-wp-2022-027 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Natalie Nitsche;Aiva Jasilioniene;Jessica Nisén;Peng Li;M. S. Kniffka;Jonas Schöley;G. Andersson;Christos Bagavos;A. Berrington;Ivan Čipin;Susana Clemente;L. Dommermuth;P. Fallesen;Dovilė Galdauskaitė;D. Jemna;Mathias Lerch;Cadhla McDonnell;A. Muller;K. Neels;Olga Pötzsch;Diego Ramiro;B. Riederer;Saskia te Riele;L. Szabó;L. Toulemon;Daniele Vignoli;K. Zeman;Tina Žnidaršič - 通讯作者:
Tina Žnidaršič
ROS2 Real-time Performance Optimization and Evaluation
ROS2实时性能优化与评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.2
- 作者:
Yanlei Ye;Zhenguo Nie;Xinjun Liu;Fugui Xie;Zihao Li;Peng Li - 通讯作者:
Peng Li
Outcome of Adenotonsillectomy for Obstructive Sleep Apnea Syndrome in Children
腺样体扁桃体切除术治疗儿童阻塞性睡眠呼吸暂停综合征的结果
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
J. Ye;Hui Liu;Gehua Zhang;Peng Li;Qintai Yang;Xian Liu;Yuan Li - 通讯作者:
Yuan Li
Retrospective estimation of the time-varying effective reproduction number for a COVID-19 outbreak in Shenyang, China: An observational study
中国沉阳市 COVID-19 疫情随时间变化的有效繁殖数的回顾性估计:一项观察性研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.6
- 作者:
Peng Li;Lihai Wen;Baijun Sun;Wei Sun;Huijie Chen - 通讯作者:
Huijie Chen
Internal modification of Thermal-Extruded Polymethyl Pentene
热挤压聚甲基戊烯的内部改性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
G. Zhu;Jing Xiang;D. Zhou;Peng Li;Hanwen Ou;Xihao Chen - 通讯作者:
Xihao Chen
Peng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Li', 18)}}的其他基金
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
$ 30.42万 - 项目类别:
Standard Grant
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
- 批准号:
EP/X031608/1 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Research Grant
CAREER: Compact digital biosensing system enabled by localized acoustic streaming
职业:由局部声流驱动的紧凑型数字生物传感系统
- 批准号:
2144216 - 财政年份:2022
- 资助金额:
$ 30.42万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:
1956313 - 财政年份:2020
- 资助金额:
$ 30.42万 - 项目类别:
Continuing Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1911067 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1948201 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
- 批准号:
1940761 - 财政年份:2019
- 资助金额:
$ 30.42万 - 项目类别:
Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
- 批准号:
1810125 - 财政年份:2018
- 资助金额:
$ 30.42万 - 项目类别:
Standard Grant
I-Corps: Enabling Electronic Design using Data Intelligence
I-Corps:使用数据智能实现电子设计
- 批准号:
1740531 - 财政年份:2017
- 资助金额:
$ 30.42万 - 项目类别:
Standard Grant
相似国自然基金
基于母线端口电压自适应调节的V2G变换器关键问题研究
- 批准号:52307219
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于有功—无功自适应集群分区的含分布式光伏配电网电压协调—自治策略研究
- 批准号:52307084
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于自适应动态规划方法的分布式光伏电源并网电压最优协调控制
- 批准号:62203104
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于自适应动态规划方法的分布式光伏电源并网电压最优协调控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于零序电压注入的电流型PWM整流器制氢电源拓扑与电网/负载友好型自适应控制研究
- 批准号:52207195
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Linking rare primate ganglion cells to downstream visual functions
将稀有灵长类神经节细胞与下游视觉功能联系起来
- 批准号:
10721221 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Validation and Optimization of Two-Photon Dendritic Voltage Imaging in Vivo
体内双光子树突电压成像的验证和优化
- 批准号:
10658307 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Role of Keratin 18 for Stress-induced Adaptive Strength Gains
角蛋白 18 在压力引起的适应性力量增益中的作用
- 批准号:
10805876 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Development of an INSPIRE System for the Treatment of Inoperable Liver Tumors
开发用于治疗无法手术的肝脏肿瘤的 INSPIRE 系统
- 批准号:
10560677 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别:
Role of PFC Activity in the Behavioral Deficits Induced by Maternal Separation
PFC 活性在母亲分离引起的行为缺陷中的作用
- 批准号:
10567520 - 财政年份:2023
- 资助金额:
$ 30.42万 - 项目类别: