EFRI NewLAW: Non-reciprocal, topologically protected propagation using atomically thin materials for nanoscale devices

EFRI NewLAW:使用原子级薄材料用于纳米级设备的非互易、拓扑保护传播

基本信息

  • 批准号:
    1741691
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-11-01 至 2022-10-31
  • 项目状态:
    已结题

项目摘要

Reciprocity in optics can be described by the familiar observation: "If I can see you, you can see me." This phenomenon stems from the fact that laws of nature governing light and its interaction with matter on a microscopic level do not prefer any particular direction of time. In other words, if we were to hypothetically reverse the direction of time, the predictions of the laws of nature would remain unaltered. Of course, at a macroscopic scale, this is not the case as we know from experience that the arrow of time has a fixed direction. It turns out that an external magnetic field can break the symmetry of time even at the microscopic scale by picking a preferred direction of propagation, which can lead to a break down of reciprocity. In current optical devices, magnets are used to cause such a one-way propagation of light, which is crucial for optical communications and the Internet. One goal of this project is to achieve non-reciprocity of light without the use of magnets by using a new class of materials, which are atomically thin. Such materials feature an effective magnetic field due to their unique crystal structure and can be used in lieu of an applied external magnetic field for one-way propagation of light. This project aims to realize miniaturized optical devices and circuit elements based on these novel materials, which will allow for faster optical switches and defect-insensitive propagation on a reduced footprint. Such devices have the potential to transform the optical telecommunication industry. During the course of this project, the research team will provide science education and research experiences in cutting-edge technologies to middle school, undergraduate and graduate students, including those students from Historically Black Colleges and Universities, in an effort to enhance the science and engineering workforce of tomorrow. The goal of this project is to realize on-chip, non-reciprocal nanophotonic devices and circuit elements operating at optical frequencies and topologically protected edge states for photons. Such devices will feature novel functionalities such as reconfigurable one-way propagation and steering of light. Non-reciprocal propagation of energy and information in a time-independent and linear system requires broken time-reversal symmetry, which can be achieved by an external magnetic field. We will achieve non-reciprocal propagation at nanoscale in a magnetic-free way with the possibility of active control by external stimuli. Our approach will employ atomically thin materials such as transition metal dichalcogenides with unique electronic and optical properties to achieve these goals. In these materials, which break inversion symmetry, an effective magnetic field in the momentum-space called the Berry curvature is present. Although no net Berry curvature is present in these materials, electric control offers the possibility of spatially local time-reversal breaking and non-reciprocal propagation. In addition, we will rely on the strong light-matter interactions and non-linearity in these materials to increase non-reciprocity and also to realize topologically protected edge states of light. To this end, optical and plasmonic nano-cavities, which enhance light-matter interactions, will be exploited. This research project will advance our fundamental understanding of effective gauge-fields like Berry curvature in low-dimensional materials and how strong light-matter interactions can be exploited to achieve on-chip, reconfigurable non-reciprocity and topological states of light-matter.
光学中的相互作用可以用我们熟悉的观察来描述:“如果我能看到你,你也能看到我。“这一现象源于这样一个事实,即在微观层面上控制光及其与物质相互作用的自然法则并不倾向于任何特定的时间方向。换句话说,如果我们假设颠倒时间的方向,自然定律的预测将保持不变。当然,在宏观尺度上,情况并非如此,因为我们从经验中知道,时间之箭有一个固定的方向。事实证明,即使在微观尺度上,外部磁场也可以通过选择优选的传播方向来打破时间的对称性,这可能导致互易性的破坏。在目前的光学设备中,磁铁被用来引起这种光的单向传播,这对于光通信和互联网至关重要。该项目的一个目标是通过使用一类新的原子级薄材料,在不使用磁体的情况下实现光的非互易性。这种材料由于其独特的晶体结构而具有有效的磁场,并且可以代替施加的外部磁场用于光的单向传播。该项目旨在实现基于这些新型材料的小型化光学器件和电路元件,这将允许更快的光开关和减少占地面积的缺陷不敏感传播。这种设备有可能改变光通信行业。在这个项目的过程中,研究团队将提供科学教育和尖端技术的研究经验,以中学,本科和研究生,包括那些学生从历史上的黑人学院和大学,在努力提高科学和工程劳动力的明天。该项目的目标是实现芯片上的,非互易纳米光子器件和电路元件在光频率和拓扑保护的光子边缘状态。这种设备将具有新的功能,如可重新配置的单向传播和光的转向。能量和信息在与时间无关的线性系统中的非互易传播需要打破时间反演对称性,这可以通过外部磁场来实现。我们将实现非互易性传播在纳米尺度上的无磁的方式与外部刺激的主动控制的可能性。我们的方法将采用原子级薄的材料,如过渡金属二硫属化物具有独特的电子和光学性能,以实现这些目标。在这些破坏反转对称的材料中,存在动量空间中的有效磁场,称为贝里曲率。虽然没有净贝里曲率是目前在这些材料中,电控制提供了空间局部时间反演打破和非互易传播的可能性。此外,我们将依靠这些材料中强的光-物质相互作用和非线性来增加非互易性,并实现光的拓扑保护边缘态。为此,将利用增强光与物质相互作用的光学和等离子体纳米腔。该研究项目将推进我们对低维材料中Berry曲率等有效规范场的基本理解,以及如何利用强光物质相互作用来实现光物质的片上可重构非互易性和拓扑状态。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fundamentally fastest optical processes at the surface of a topological insulator
  • DOI:
    10.1103/physrevb.98.125410
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    S. A. Oliaei Motlagh;Jhih-Sheng Wu;V. Apalkov;M. Stockman
  • 通讯作者:
    S. A. Oliaei Motlagh;Jhih-Sheng Wu;V. Apalkov;M. Stockman
Topological resonance and single-optical-cycle valley polarization in gapped graphene
  • DOI:
    10.1103/physrevb.100.115431
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    S. A. Oliaei Motlagh;F. Nematollahi;V. Apalkov;M. Stockman
  • 通讯作者:
    S. A. Oliaei Motlagh;F. Nematollahi;V. Apalkov;M. Stockman
Optical control of the valley Zeeman effect through many-exciton interactions
  • DOI:
    10.1038/s41565-020-00804-0
  • 发表时间:
    2020-11-30
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Li, Weijie;Lu, Xin;Srivastava, Ajit
  • 通讯作者:
    Srivastava, Ajit
Phase-matched nonlinear second-harmonic generation in plasmonic metasurfaces
  • DOI:
    10.1515/nanoph-2018-0181
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    S. H. Shams Mousavi;R. Lemasters;Feng Wang;A. E. Dorche;H. Taheri;A. Eftekhar;H. Harutyunyan;A. Adibi
  • 通讯作者:
    S. H. Shams Mousavi;R. Lemasters;Feng Wang;A. E. Dorche;H. Taheri;A. Eftekhar;H. Harutyunyan;A. Adibi
Light Absorption and Emission Dominated by Trions in the Type-I van der Waals Heterostructures
  • DOI:
    10.1021/acsphotonics.0c01942
  • 发表时间:
    2021-06-11
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Bae, Hyemin;Kim, Suk Hyun;Choi, Hyunyong
  • 通讯作者:
    Choi, Hyunyong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ajit Srivastava其他文献

“More” or “Enough”? Rural-Urban Differences in Maximizing: The Case of India
城乡差异最大化:“更多”还是“足够”?
Best Practices for Improving the Reliability of Power Electronic Assets in a large Oil and Gas Facility
提高大型石油和天然气设施电力电子资产可靠性的最佳实践
Chiral phonons in the indirect optical transition of a MoS2/WS2 heterostructure
MoS2/WS2 异质结构间接光学跃迁中的手性声子
  • DOI:
    10.1103/physrevb.102.174301
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Wei Zhang;Ajit Srivastava;Xiao Li;Lifa Zhang
  • 通讯作者:
    Lifa Zhang
Chiral phonons in the indirect optical transition of a MoS2/WS2 heterostructure
  • DOI:
    https://doi.org/10.1103/PhysRevB.102.174301
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Wei Zhang;Ajit Srivastava;Xiao Li;Lifa Zhang
  • 通讯作者:
    Lifa Zhang
Impact of COVID-19 lockdown on aerosol optical and radiative properties over Indo-Gangetic Plain
  • DOI:
    10.1016/j.uclim.2021.100839
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Atul Kumar Sarla;Ajit Srivastava;Sumit Kumar Ahlawat; Mishra
  • 通讯作者:
    Mishra

Ajit Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ajit Srivastava', 18)}}的其他基金

Quantum Straintronics with Single Photon Emitters in van der Waals Materials
范德华材料中的单光子发射器的量子应变电子学
  • 批准号:
    1905809
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
  • 批准号:
    1849079
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
  • 批准号:
    1741618
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
  • 批准号:
    1741660
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
  • 批准号:
    1741673
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
  • 批准号:
    1741666
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
  • 批准号:
    1741694
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
  • 批准号:
    1741693
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
  • 批准号:
    1741565
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
  • 批准号:
    1741677
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
  • 批准号:
    1741685
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了