Thermal conductivity of Deep Earth's materials studied by combined fast pulsed laser and optical spectroscopy techniques

通过快速脉冲激光和光谱技术相结合研究地球深部材料的热导率

基本信息

  • 批准号:
    1763287
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-15 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

Knowledge of thermal conductivity of the Earth's mantle and core materials under extreme conditions is important for understanding the physical and chemical processes and their evolution in the Earth. Sustained heat transport through the mantle is crucial for the existence and stability of the Earth's magnetic field. The Earth's mantle dynamics depends on the rate of heat transfer by convection, conduction, and radiation, and understanding these processes requires knowledge on the conductive and radiative parts of thermal conductivity. The investigators will conduct measurements of the conductive and radiative parts of thermal conductivity at extreme conditions of pressure and temperature that are relevant for the Earth's deep interior. The laser techniques developed in this work will advance other fields, which benefit from knowledge of thermal conductivity under extremes, for example various energy applications. A range of students, including area high school students, undergraduates, graduate students, and postdoctoral associates, will benefit from high-quality scientific training at Carnegie that will be provided by participation in the cutting-edge science that will be developed in the course of this work. The investigators will determine the thermal conductivity of the Earth's key minerals under high pressure and high temperature conditions (up to 150 GPa and 6000 K) by using pump-probe pulsed laser techniques. To determine the lattice thermal conductivity, they will measure the heat flux histories across the sample using time- and spatially- resolved spectroradiometry and/or time-domain thermoreflectance. To infer the radiative thermal conductivity, the team will study the optical spectra of these mantle minerals in the ultraviolet-to-infrared spectral range. They will apply the time-resolved emission and optical broad band spectroscopy tools that they have previously developed including pulsed white laser (supercontinuum) in combination with time-resolved multichannel detectors (streak camera and intensified CCD). The experiments will be performed on Fe and Fe-rich alloys, high-quality geologically relevant samples pre-synthesized at high P-T condition in large-volume devices (e.g. single crystals of bridgmanite), silicate and oxide melts, and planetary ices. These high P-T experimental data will enable a direct estimate of the radiative and conduction parts of the thermal conductivity of the Earth's mantle and core. These measurements will elucidate complex laws which govern thermal conductivity in the deep interior and reach sufficient accuracy to critically improve existing planetary models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解极端条件下地幔和地核材料的导热性对于理解地球的物理和化学过程及其演化是非常重要的。通过地幔的持续热传输对地球磁场的存在和稳定至关重要。地幔动力学取决于对流、传导和辐射的传热速率,理解这些过程需要了解导热性的传导和辐射部分。研究人员将在与地球深处有关的极端压力和温度条件下,对热导率的传导和辐射部分进行测量。在这项工作中开发的激光技术将推动其他领域的发展,这些领域受益于极端情况下的导热性知识,例如各种能源应用。一系列学生,包括地区高中生、本科生、研究生和博士后助理,将受益于卡内基高质量的科学培训,这些培训将通过参与这项工作过程中发展的尖端科学来提供。研究人员将利用泵浦探测脉冲激光技术确定地球关键矿物在高压和高温条件下(高达150 GPa和6000 K)的热导率。为了确定晶格热导率,他们将使用时间和空间分辨光谱辐射测量和/或时域热反射来测量样品的热通量历史。为了推断辐射热导率,研究小组将研究这些地幔矿物在紫外到红外光谱范围内的光谱。他们将应用他们之前开发的时间分辨发射和光学宽带光谱工具,包括脉冲白色激光(超连续介质)与时间分辨多通道探测器(条纹相机和增强CCD)相结合。实验将在铁和富铁合金、高P-T条件下在大体积装置中预合成的高质量地质相关样品(如桥菱石单晶)、硅酸盐和氧化物熔体以及行星冰上进行。这些高P-T实验数据将使我们能够直接估计地幔和地核的热导率的辐射和传导部分。这些测量将阐明控制深层内部热导率的复杂规律,并达到足够的精度,以严格改进现有的行星模型。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radiative thermal conductivity of single-crystal bridgmanite at the core-mantle boundary with implications for thermal evolution of the Earth
核幔边界处单晶桥锰矿的辐射热导率对地球热演化的影响
  • DOI:
    10.1016/j.epsl.2021.117329
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Murakami Motohiko;Goncharov Alexander F.;Miyajima Nobuyoshi;Yamazaki Daisuke;Holtgrewe Nicholas
  • 通讯作者:
    Holtgrewe Nicholas
Raman spectroscopy on hydrogenated graphene under high pressure
  • DOI:
    10.1016/j.carbon.2019.09.077
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Pakornchote, Teerachote;Geballe, Zachary M.;Goncharov, Alexander F.
  • 通讯作者:
    Goncharov, Alexander F.
Helium-hydrogen immiscibility at high pressures
高压下氦-氢不混溶
  • DOI:
    10.1063/1.5086270
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Wang;Xiao Zhang;Shuqing Jiang;Zachary M. Geballe;Teerachote Pakornchote;Maddury Somayazulu;Vitali B. Prakapenka;Eran Greenberg;Alex;er F. Goncharov
  • 通讯作者:
    er F. Goncharov
Thermal conductivity near the bottom of the Earth's lower mantle: Measurements of pyrolite up to 120 GPa and 2500 K
  • DOI:
    10.1016/j.epsl.2020.116161
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Z. Geballe;N. Sime;J. Badro;P. V. van Keken;A. Goncharov
  • 通讯作者:
    Z. Geballe;N. Sime;J. Badro;P. V. van Keken;A. Goncharov
Intermolecular coupling and fluxional behavior of hydrogen in phase IV
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Goncharov其他文献

On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set
  • DOI:
    10.1007/s00365-010-9092-9
  • 发表时间:
    2010-04-08
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Muhammed Altun;Alexander Goncharov
  • 通讯作者:
    Alexander Goncharov
A tribute to Sasha Beilinson
  • DOI:
    10.1007/s00029-018-0399-x
  • 发表时间:
    2018-02-16
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
Orthogonal Polynomials on Generalized Julia Sets
  • DOI:
    10.1007/s11785-017-0669-1
  • 发表时间:
    2017-04-05
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Gökalp Alpan;Alexander Goncharov
  • 通讯作者:
    Alexander Goncharov
Donaldson–Thomas transformations of moduli spaces of G-local systems
  • DOI:
    10.1016/j.aim.2017.06.017
  • 发表时间:
    2018-03-17
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Goncharov;Linhui Shen
  • 通讯作者:
    Linhui Shen
The Galois group of the category of mixed Hodge–Tate structures
  • DOI:
    10.1007/s00029-018-0393-3
  • 发表时间:
    2018-02-09
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Alexander Goncharov;Guangyu Zhu
  • 通讯作者:
    Guangyu Zhu

Alexander Goncharov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Goncharov', 18)}}的其他基金

Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
  • 批准号:
    2320309
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
  • 批准号:
    2153059
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
  • 批准号:
    2049127
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
  • 批准号:
    1900743
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Moduli Spaces, Motives, Periods, and Scattering Amplitudes
模空间、动机、周期和散射幅度
  • 批准号:
    1564385
  • 财政年份:
    2016
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of integrated optical spectroscopy system at the Advanced Photon Source
MRI:在先进光子源处获取集成光谱系统
  • 批准号:
    1531583
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
  • 批准号:
    1520648
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Development of an Ultrafast Laser Instrument for Probing Earth and Planetary Materials under Extreme Pressures and Temperatures
开发用于在极端压力和温度下探测地球和行星材料的超快激光仪器
  • 批准号:
    1128867
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
MODULI SPACES, MOTIVES, PERIODS and SCATTERING AMPLITUDES
模空间、动机、周期和散射幅度
  • 批准号:
    1301776
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant

相似海外基金

Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
  • 批准号:
    1520648
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Optical Study of Thermal conductivity of Deep Earth's Materials at High Pressure and Temperature
高温高压下地球深部材料热导率的光学研究
  • 批准号:
    1015239
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
On/offshore deep electrical conductivity structure to investigate the Walvis Ridge magmatism and its interaction with the Kaoko Mobile Belt in northern Namibia. (ELCONA)
陆上/海上深部导电结构,用于研究沃尔维斯海岭岩浆作用及其与纳米比亚北部卡奥科移动带的相互作用。
  • 批准号:
    172801653
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Priority Programmes
Electrical conductivity of synthetic pyrolite under deep upper mantle and transition zone conditions
上地幔深部和过渡带条件下合成硫磺岩的电导率
  • 批准号:
    0911465
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Thermal conductivity measurements of deep Earth materials under high pressure
高压下地球深层材料的热导率测量
  • 批准号:
    21540444
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of Deep Brain Stimulation: Joule Heating and Electroporation
深部脑刺激机制:焦耳加热和电穿孔
  • 批准号:
    7197377
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
Elucidation of wide and deep electrical conductivity structure beneath the marginal region of the Eurasian Continent
阐明欧亚大陆边缘地区下方宽而深的导电结构
  • 批准号:
    18403005
  • 财政年份:
    2006
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Realistic Biophysical Modeling of Deep Brain Stimulation
深部脑刺激的真实生物物理模型
  • 批准号:
    7224198
  • 财政年份:
    2005
  • 资助金额:
    $ 28万
  • 项目类别:
Measurements of Thermal Conductivity of Deep Earth Minerals
地球深部矿物热导率的测量
  • 批准号:
    0510914
  • 财政年份:
    2005
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Measurements of thermophysical properties of deep Earth materials under high pressure and high temperature
高压高温下地球深部物质热物性测量
  • 批准号:
    14540401
  • 财政年份:
    2002
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了